Suppr超能文献

利用比对的同源序列改进蛋白质二级结构预测

Improving protein secondary structure prediction with aligned homologous sequences.

作者信息

Di Francesco V, Garnier J, Munson P J

机构信息

NIH/DCRT/LSB, Bethesda, Maryland 20892-5626, USA.

出版信息

Protein Sci. 1996 Jan;5(1):106-13. doi: 10.1002/pro.5560050113.

Abstract

Most recent protein secondary structure prediction methods use sequence alignments to improve the prediction quality. We investigate the relationship between the location of secondary structural elements, gaps, and variable residue positions in multiple sequence alignments. We further investigate how these relationships compare with those found in structurally aligned protein families. We show how such associations may be used to improve the quality of prediction of the secondary structure elements, using the Quadratic-Logistic method with profiles. Furthermore, we analyze the extent to which the number of homologous sequences influences the quality of prediction. The analysis of variable residue positions shows that surprisingly, helical regions exhibit greater variability than do coil regions, which are generally thought to be the most common secondary structure elements in loops. However, the correlation between variability and the presence of helices does not significantly improve prediction quality. Gaps are a distinct signal for coil regions. Increasing the coil propensity for those residues occurring in gap regions enhances the overall prediction quality. Prediction accuracy increases initially with the number of homologues, but changes negligibly as the number of homologues exceeds about 14. The alignment quality affects the prediction more than other factors, hence a careful selection and alignment of even a small number of homologues can lead to significant improvements in prediction accuracy.

摘要

最近的大多数蛋白质二级结构预测方法都使用序列比对来提高预测质量。我们研究了多序列比对中二级结构元件的位置、空位和可变残基位置之间的关系。我们进一步研究了这些关系与结构比对的蛋白质家族中的关系有何不同。我们展示了如何使用带序列谱的二次逻辑方法,通过这些关联来提高二级结构元件的预测质量。此外,我们分析了同源序列的数量对预测质量的影响程度。对可变残基位置的分析表明,令人惊讶的是,螺旋区域的变异性比通常被认为是环中最常见二级结构元件的卷曲区域更大。然而,变异性与螺旋存在之间的相关性并不能显著提高预测质量。空位是卷曲区域的一个明显信号。增加空位区域中出现的那些残基的卷曲倾向可提高整体预测质量。预测准确性最初随着同源物数量的增加而提高,但当同源物数量超过约14个时变化很小。比对质量对预测的影响比其他因素更大,因此即使仔细选择和比对少量同源物也能显著提高预测准确性。

相似文献

引用本文的文献

本文引用的文献

5
Predicting the conformation of proteins from sequences. Progress and future progress.
Adv Enzyme Regul. 1994;34:269-353. doi: 10.1016/0065-2571(94)90021-3.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验