Suppr超能文献

基于改进的离子运动优化算法的增强型片段化生物局部比对器分析新冠病毒。

Analyzing COVID-19 virus based on enhanced fragmented biological Local Aligner using improved Ions Motion Optimization algorithm.

作者信息

Issa Mohamed, Elaziz Mohamed Abd

机构信息

Computer and Systems Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt.

Hubei Engineering Research Center on Big Data Security, School of Cyber Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Appl Soft Comput. 2020 Nov;96:106683. doi: 10.1016/j.asoc.2020.106683. Epub 2020 Sep 3.

Abstract

SARS-CoV-2 (COVID-19) virus is a havoc pandemic that infects millions of people over the world and thousands of infected cases dead. So, it is vital to propose new intelligent data analysis tools and enhance the existed ones to aid scientists in analyzing the COVID-19 virus. Fragmented Local Aligner Technique (FLAT) is a data analysis tool that is used for detecting the longest common consecutive subsequence (LCCS) between a pair of biological data sequences. FLAT is an aligner tool that can be used to find the LCCS between COVID-19 virus and other viruses to help in other biochemistry and biological operations. In this study, the enhancement of FLAT based on modified Ions Motion Optimization (IMO) is developed to produce acceptable LCCS with efficient performance in a reasonable time. The proposed method was tested to find the LCCS between Orflab poly-protein and surface glycoprotein of COVID-19 and other viruses. The experimental results demonstrate that the proposed model succeeded in producing the best LCCS against other algorithms using real LCCS measured by the SW algorithm as a reference.

摘要

严重急性呼吸综合征冠状病毒2(COVID-19)是一种极具破坏力的大流行病,感染了全球数百万人,导致数千例感染者死亡。因此,提出新的智能数据分析工具并改进现有工具以帮助科学家分析COVID-19病毒至关重要。片段局部比对技术(FLAT)是一种数据分析工具,用于检测一对生物数据序列之间最长的连续公共子序列(LCCS)。FLAT是一种比对工具,可用于查找COVID-19病毒与其他病毒之间的LCCS,以辅助其他生物化学和生物学操作。在本研究中,基于改进的离子运动优化(IMO)对FLAT进行了改进,以在合理的时间内高效地产生可接受的LCCS。所提出的方法经过测试,用于查找COVID-19的Orflab多蛋白与表面糖蛋白以及其他病毒之间的LCCS。实验结果表明,以SW算法测量的真实LCCS为参考,所提出的模型成功地针对其他算法产生了最佳的LCCS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ce/7467904/7d924826eeb7/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验