Schneider H, Sampaio I, Harada M L, Barroso C M, Schneider M P, Czelusniak J, Goodman M
Universidade Federal do Para, Departamento de Genetica, Belem, Brazil.
Am J Phys Anthropol. 1996 Jun;100(2):153-79. doi: 10.1002/(SICI)1096-8644(199606)100:2<153::AID-AJPA1>3.0.CO;2-Z.
Nuclear sequences of the 1.8 kilobase (kb) long intron 1 of the interstitial retinol-binding protein gene (IRBP), previously determined for 11 of the 16 extant genera of New World monkeys (superfamily Ceboidea, infraorder Platyrrhini), have now been determined for the remaining 5 genera. The maximum parsimony trees found, first with IRBP sequences alone and then with tandemly combined IRBP and epsilon-globin gene sequences from the same species, supported a provisional cladistic classification with the following clusters. Subtribes Callitrichina (Callithrix, Cebuella), Callimiconina (Callimico), Leontopithecina (Leontopithecus) and Saguina (Saguinus) constitute subfamily Callitrichinae, and subfamilies Callitrichinae, Aotinae (Aotus), and Cebinae (Cebus, Saimiri) constitute family Cebidae. Subtribes Chiropotina (Chiropotes, Cacajao) and Pitheciina (Pithecia) constitute tribe Pitheciini; and tribes Pitheciini and Callicebini (Callicebus) constitute subfamily Pitheciinae. Subtribes Brachytelina (Brachyteles, Lagothrix) and Atelina (Ateles) constitute tribe Atelini, and tribes Atelini and Alouattini (Alouatta) constitute subfamily Atelinae. The parsimony results were equivocal as to whether Pitheciinae should be grouped with Atelinae in family Atelidae or have its own family Pitheciidae. The cladistic groupings of extant ceboids were also examined by different stochastic evolutionary models that employed the same stochastic process of nucleotide substitutions but alternative putative phylogenetic trees on which the nucleotide substitutions occurred. Each model, i.e., each different tree, predicted a different multinomial distribution of nucleotide character patterns for the contemporary sequences. The predicted distributions that were closest to the actual observed distributions identified the best fitting trees. The cladistic relationships depicted in these best fitting trees agreed in almost all cases with those depicted in the maximum parsimony trees.
此前已测定了新大陆猴(阔鼻猴超科,阔鼻下目)16个现存属中11个属的间质视黄醇结合蛋白基因(IRBP)1.8千碱基(kb)长的内含子1的核序列,现在已测定了其余5个属的该序列。首先仅使用IRBP序列,然后使用来自同一物种的串联组合的IRBP和ε-珠蛋白基因序列构建的最大简约树,支持了以下聚类的初步分支分类。狨猴亚族(狨猴属、侏狨属)、伶猴亚族(伶猴属)、狮面狨亚族(狮面狨属)和柽柳猴亚族(柽柳猴属)构成狨猴亚科,狨猴亚科、夜猴亚科(夜猴属)和卷尾猴亚科(卷尾猴属、松鼠猴属)构成卷尾猴科。绒毛猴亚族(绒毛猴属、秃猴属)和僧面猴亚族(僧面猴属)构成僧面猴族;僧面猴族和丛尾猴族(丛尾猴属)构成僧面猴亚科。短尾猴亚族(短尾猴属、绒毛蛛猴属)和蛛猴亚族(蛛猴属)构成蛛猴族,蛛猴族和吼猴族(吼猴属)构成蛛猴亚科。关于僧面猴亚科应与蛛猴亚科归为蛛猴科还是应有自己的僧面猴科这一问题,简约分析结果并不明确。还通过不同的随机进化模型对现存阔鼻猴的分支分类进行了研究,这些模型采用相同的核苷酸替换随机过程,但核苷酸替换发生在不同的假定系统发育树上。每个模型,即每棵不同的树,都预测了当代序列核苷酸特征模式的不同多项分布。与实际观察到的分布最接近的预测分布确定了最拟合的树。这些最拟合树中描绘的分支关系在几乎所有情况下都与最大简约树中描绘的关系一致。