Holmes T C, Fadool D A, Levitan I B
Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254, USA.
J Neurosci. 1996 Mar 1;16(5):1581-90. doi: 10.1523/JNEUROSCI.16-05-01581.1996.
Kv1.3, a voltage-dependent potassium channel cloned from mammalian brain and T lymphocytes, contains multiple tyrosine residues that are putative targets for tyrosine kinases. We have examined the tyrosine phosphorylation of Kv1.3, expressed transiently in human embryonic kidney (or HEK) 293 cells, by endogenous and coexpressed tyrosine kinases. Tyrosine phosphorylation is measured by a strategy of immunoprecipitation followed by. Western blot analysis, using antibodies that specifically recognize Kv1.3 and phosphotyrosine. Coexpression of the constitutively active tyrosine kinase v-src, together with Kv1.3, causes a large increase in the tyrosine phosphorylation of the channel protein. This phosphorylation of Kv1.3 can be reversed by treatment with alkaline phosphatase before Western blot analysis. Coexpression with a receptor tyrosine kinase, the human epidermal growth factor receptor, also causes an increase in tyrosine phosphorylation of Kv1.3. The effects of endogenous tyrosine kinases were examined by treating Kv1.3-transfected cells with the specific membrane-permeant tyrosine phosphatase inhibitor pervanadate. Pervanadate treatment causes a time- and concentration-dependent increase in the tyrosine phosphorylation of Kv1.3. This increased tyrosine phosphorylation of Kv1.3 is accompanied by a time-dependent decrease in Kv1.3 current, measured by patch-clamp analysis with cell-attached membrane patches. The pervanadate-induced suppression of current and much of the channel tyrosine phosphorylation are eliminated by mutation of a specific tyrosine residue, at position 449 of Kv1.3, to phenylalanine. Thus, there is a continual phosphorylation and dephosphorylation of Kv1.3 by endogenous kinases and phosphatases, and perturbation of this constitutive phosphorylation/dephosphorylation cycle can profoundly influence channel activity.
Kv1.3是一种从哺乳动物大脑和T淋巴细胞中克隆出来的电压依赖性钾通道,含有多个酪氨酸残基,这些残基可能是酪氨酸激酶的作用靶点。我们研究了在人胚肾(HEK)293细胞中瞬时表达的Kv1.3被内源性和共表达的酪氨酸激酶进行酪氨酸磷酸化的情况。酪氨酸磷酸化通过免疫沉淀策略进行检测,随后进行蛋白质印迹分析,使用特异性识别Kv1.3和磷酸酪氨酸的抗体。组成型活性酪氨酸激酶v-src与Kv1.3共表达,会导致通道蛋白的酪氨酸磷酸化大幅增加。在蛋白质印迹分析前用碱性磷酸酶处理可使这种Kv1.3的磷酸化逆转。与人表皮生长因子受体这种受体酪氨酸激酶共表达,也会导致Kv1.3的酪氨酸磷酸化增加。通过用特异性可透过细胞膜的酪氨酸磷酸酶抑制剂过钒酸盐处理转染了Kv1.3的细胞来检测内源性酪氨酸激酶的作用。过钒酸盐处理会导致Kv1.3的酪氨酸磷酸化呈时间和浓度依赖性增加。这种Kv1.3酪氨酸磷酸化的增加伴随着通过细胞贴附膜片钳分析测得的Kv1.3电流的时间依赖性降低。将Kv1.3第449位的特定酪氨酸残基突变为苯丙氨酸,可消除过钒酸盐诱导的电流抑制和大部分通道酪氨酸磷酸化。因此,Kv1.3会被内源性激酶和磷酸酶持续磷酸化和去磷酸化,这种组成型磷酸化/去磷酸化循环的扰动会深刻影响通道活性。