Suppr超能文献

Cardiorespiratory and metabolic responses to positive, negative and minimum-load dynamic leg exercise.

作者信息

Hesser C M, Linnarsson D, Bjurstedt H

出版信息

Respir Physiol. 1977 Jun;30(1-2):51-67. doi: 10.1016/0034-5687(77)90021-4.

Abstract

Cardiorespiratory and metabolic responses to steady-state dynamic leg exercise were studied in seven male subjects who performed positive and negative work on a modified Krogh cycle ergometer at loads of 0, 16, 33, 49, 98, and 147 W with a pedalling rate of 60 rpm. In positive work, O2 uptake increased with the ergometric load in a parabolic fashion. Net O2 uptake averaged averaged 220 ml-min-1 at 0 W (loadless pedalling), and was 75 ml-min-1 lower at the point of physiological minimum load which occurred in negative work at approximately 9 W. The O2 cost of loadless pedalling is for one-third attributed to the work of overcoming elastic and viscous resistance, the remaining part being due mainly to the work of antagonistic muscle contraction in the moving legs. Although at a given VO2, work rate was much higher in negative than in positive work, corresponding values for VE were similar, suggesting that the mechanical tension in working muscles is of little or no importance in the control of ventilation in steady-state exercise. Heart rate increased linearly with VO2 in both positive and negative work, with a steeper slope in negative work. Evidence is presented that none of the current definitions of muscular efficiency yields the true efficiency of muscular contraction in cycle ergometry, net efficiency calculation resulting in too low estimates, and work and delta efficiency calculations in overestimated values in the low-intensity work range, and in underestimated values in the high-intensity range.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验