Shadlen M N, Britten K H, Newsome W T, Movshon J A
Department of Neurobiology, Stanford University School of Medicine, California 94305, USA.
J Neurosci. 1996 Feb 15;16(4):1486-510. doi: 10.1523/JNEUROSCI.16-04-01486.1996.
We have documented previously a close relationship between neuronal activity in the middle temporal visual area (MT or V5) and behavioral judgments of motion (Newsome et al., 1989; Salzman et al., 1990; Britten et al., 1992; Britten et al., 1996). We have now used numerical simulations to try to understand how neural signals in area MT support psychophysical decisions. We developed a model that pools neuronal responses drawn from our physiological data set and compares average responses in different pools to produce psychophysical decisions. The structure of the model allows us to assess the relationship between "neuronal" input signals and simulated psychophysical performance using the same methods we have applied to real experimental data. We sought to reconcile three experimental observations: psychophysical performance (threshold sensitivity to motion stimuli embedded in noise), a trial-by-trial covariation between the neural response and the monkey's choices, and a modest correlation between pairs of MT neurons in their variable responses to identical visual stimuli. Our results can be most accurately simulated if psychophysical decisions are based on pools of at least 100 weakly correlated sensory neurons. The neurons composing the pools must include a broader range of sensitivities than we encountered in our MT recordings, presumably because of the inclusion of neurons whose optimal stimulus is different from the one being discriminated. Central sources of noise degrade the signal-to-noise ratio of the pooled signal, but this degradation is relatively small compared with the noise typically carried by single cortical neurons. This suggests that our monkeys base near-threshold psychophysical judgments on signals carried by populations of weakly interacting neurons; these populations include many neurons that are not tuned optimally for the particular stimuli being discriminated.
我们之前已经记录了颞中视觉区(MT或V5)的神经元活动与运动行为判断之间的密切关系(纽瑟姆等人,1989年;萨尔兹曼等人,1990年;布里滕等人,1992年;布里滕等人,1996年)。我们现在使用数值模拟来试图理解MT区的神经信号如何支持心理物理学决策。我们开发了一个模型,该模型汇总从我们的生理数据集中提取的神经元反应,并比较不同汇总中的平均反应以做出心理物理学决策。该模型的结构使我们能够使用应用于实际实验数据的相同方法,评估“神经元”输入信号与模拟心理物理学表现之间的关系。我们试图协调三个实验观察结果:心理物理学表现(对噪声中嵌入的运动刺激的阈值敏感性)、神经反应与猴子选择之间的逐次试验协变,以及MT神经元对相同视觉刺激的可变反应之间的适度相关性。如果心理物理学决策基于至少100个弱相关感觉神经元的汇总,我们的结果可以得到最准确的模拟。组成汇总的神经元必须包括比我们在MT记录中遇到的更广泛的敏感性范围,大概是因为纳入了最佳刺激与被区分刺激不同的神经元。噪声的中央来源会降低汇总信号的信噪比,但与单个皮层神经元通常携带的噪声相比,这种降低相对较小。这表明我们的猴子基于弱相互作用神经元群体携带的信号做出接近阈值的心理物理学判断;这些群体包括许多对被区分的特定刺激没有最佳调谐的神经元。