Suppr超能文献

一种使用多维双曲嵌入分析神经活动的框架。

A framework for analyzing neural activity using multi-dimensional hyperbolic embedding.

作者信息

Rusu Iulia, Cecere Zachary T, How Javier J, Quach Kathleen T, Yemini Eviatar, Sharpee Tatyana O, Chalasani Sreekanth H

机构信息

Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093.

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037.

出版信息

bioRxiv. 2025 May 13:2021.04.09.439242. doi: 10.1101/2021.04.09.439242.

Abstract

Neurons represent changes in external and internal environments by altering their activity patterns. While coherent brain-wide patterns of neural activity have been observed in neuronal populations, very little is known about their dimensionality, geometry, and how they are correlated with sensory inputs. Here, we recorded the activity of most head neurons in experiencing changes in bacterial or control buffer stimuli around their nose. We first classified active neurons into six functional clusters: two sensory neuron clusters (ON and OFF responding to addition and removal of stimuli, respectively) and four motor/command neuron clusters (AVA, RME, SMDD and SMDV). Next, we estimated stimulus selectivity for each cluster and found that while sensory neurons exhibit their maximal responses within 15 seconds, changes in bacterial stimuli drive maximal responses in command and motor neuron clusters after tens of seconds. Furthermore, we show that bacterial stimuli induce neural dynamics that are best described by a hyperbolic, not Euclidean, space, of dimensionality eight. The hyperbolic space provided a better description of neural activity than the standard Euclidean space. This space can be separated into three components - one sensory, and two motor directions (forward-backward and dorsal-ventral). Collectively, we show that neural activity can be effectively represented in low-dimensional hyperbolic space to describe a sensorimotor transformation.

摘要

神经元通过改变其活动模式来表征外部和内部环境的变化。虽然在神经元群体中已经观察到全脑范围的神经活动连贯模式,但对于它们的维度、几何形状以及它们如何与感觉输入相关联,我们所知甚少。在这里,我们记录了在其鼻子周围经历细菌或对照缓冲液刺激变化时大多数头部神经元的活动。我们首先将活跃神经元分为六个功能簇:两个感觉神经元簇(分别对刺激的添加和去除做出反应的ON和OFF)和四个运动/指令神经元簇(AVA、RME、SMDD和SMDV)。接下来,我们估计了每个簇的刺激选择性,发现虽然感觉神经元在15秒内表现出最大反应,但细菌刺激的变化在数十秒后驱动指令和运动神经元簇的最大反应。此外,我们表明细菌刺激诱导的神经动力学最好用一个八维的双曲空间而非欧几里得空间来描述。双曲空间比标准欧几里得空间能更好地描述神经活动。这个空间可以分为三个部分——一个感觉方向和两个运动方向(前后和背腹)。总体而言,我们表明线虫的神经活动可以在低维双曲空间中得到有效表征,以描述一种感觉运动转换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2965/12132397/e64f3f6ff181/nihpp-2021.04.09.439242v4-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验