Decaestecker C, van Velthoven R, Petein M, Janssen T, Salmon I, Pasteels J L, van Ham P, Schulman C, Kiss R
Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (I.R.I.D.I.A.), Université Libre de Bruxelles, Belgium.
J Pathol. 1996 Mar;178(3):274-83. doi: 10.1002/(SICI)1096-9896(199603)178:3<274::AID-PATH478>3.0.CO;2-P.
The aggressiveness of human bladder tumours can be assessed by means of various classification systems, including the one proposed by the World Health Organization (WHO). According to the WHO classification, three levels of malignancy are identified as grades I (low), II (intermediate), and III (high). This classification system operates satisfactorily for two of the three grades in forecasting clinical progression, most grade I tumours being associated with good prognoses and most grade III with bad. In contrast, the grade II group is very heterogeneous in terms of their clinical behaviour. The present study used two computer-assisted methods to investigate whether it is possible to sub-classify grade II tumours: computer-assisted microscope analysis (image cytometry) of Feulgen-stained nuclei and the Decision Tree Technique. This latter technique belongs to the Supervised Learning Algorithm and enables an objective assessment to be made of the diagnostic value associated with a given parameter. The combined use of these two methods in a series of 292 superficial transitional cell carcinomas shows that it is possible to identify one subgroup of grade II tumours which behave clinically like grade I tumours and a second subgroup which behaves clinically like grade III tumours. Of the nine ploidy-related parameters computed by means of image cytometry [the DNA index (DI), DNA histogram type (DHT), and the percentages of diploid, hyperdiploid, triploid, hypertriploid, tetraploid, hypertetraploid, and polyploid cell nuclei], it was the percentage of hyperdiploid and hypertetraploid cell nuclei which enabled identification, rather than conventional parameters such as the DI or the DHT.
人类膀胱肿瘤的侵袭性可通过多种分类系统进行评估,包括世界卫生组织(WHO)提出的分类系统。根据WHO分类,恶性程度分为三个级别:I级(低)、II级(中)和III级(高)。该分类系统在预测临床进展方面,对三个级别中的两个级别运行良好,大多数I级肿瘤预后良好,大多数III级肿瘤预后不良。相比之下,II级组在临床行为方面非常异质。本研究使用两种计算机辅助方法来研究是否有可能对II级肿瘤进行亚分类:对福尔根染色的细胞核进行计算机辅助显微镜分析(图像细胞术)和决策树技术。后一种技术属于监督学习算法,能够对与给定参数相关的诊断价值进行客观评估。在一系列292例浅表性移行细胞癌中联合使用这两种方法,结果表明有可能识别出一个临床行为类似于I级肿瘤的II级肿瘤亚组和另一个临床行为类似于III级肿瘤的亚组。通过图像细胞术计算的九个与倍性相关的参数[DNA指数(DI)、DNA直方图类型(DHT)以及二倍体、超二倍体、三倍体、超三倍体、四倍体、超四倍体和多倍体细胞核的百分比]中,能够实现识别的是超二倍体和超四倍体细胞核的百分比,而不是诸如DI或DHT等传统参数。