Suppr超能文献

基于数据增强和改进卷积神经网络的脑膜瘤分级图像自动预测。

Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network.

机构信息

School of Medical Information, Xuzhou Medical University, Xuzhou, China.

Key Laboratory of Intelligent Industrial Control Technology of Jiangsu Province, College of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, China.

出版信息

Comput Math Methods Med. 2019 Oct 1;2019:7289273. doi: 10.1155/2019/7289273. eCollection 2019.

Abstract

Meningioma is the second most commonly encountered tumor type in the brain. There are three grades of meningioma by the standards of the World Health Organization. Preoperative grade prediction of meningioma is extraordinarily important for clinical treatment planning and prognosis evaluation. In this paper, we present a new deep learning model for assisting automatic prediction of meningioma grades to reduce the recurrence of meningioma. Our model is based on an improved LeNet-5 model of convolutional neural network (CNN) and does not require the extraction of the diseased tissue, which can greatly enhance the efficiency. To address the issue of insufficient and unbalanced clinical data of meningioma images, we use an oversampling technique which allows us to considerably improve the accuracy of classification. Experiments on large clinical datasets show that our model can achieve quite high accuracy (i.e., as high as 83.33%) for the classification of meningioma images.

摘要

脑膜瘤是大脑中第二常见的肿瘤类型。根据世界卫生组织的标准,脑膜瘤分为三个等级。术前预测脑膜瘤的等级对于临床治疗计划和预后评估非常重要。在本文中,我们提出了一种新的深度学习模型,用于辅助自动预测脑膜瘤的等级,以降低脑膜瘤的复发率。我们的模型基于卷积神经网络(CNN)的改进 LeNet-5 模型,不需要提取病变组织,这可以大大提高效率。为了解决脑膜瘤图像临床数据不足且不平衡的问题,我们使用了一种过采样技术,这使得我们可以显著提高分类的准确性。在大型临床数据集上的实验表明,我们的模型可以对脑膜瘤图像的分类达到相当高的精度(即高达 83.33%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bfe/6791208/49d39398b37c/CMMM2019-7289273.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验