Suppr超能文献

基于数据增强和改进卷积神经网络的脑膜瘤分级图像自动预测。

Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network.

机构信息

School of Medical Information, Xuzhou Medical University, Xuzhou, China.

Key Laboratory of Intelligent Industrial Control Technology of Jiangsu Province, College of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, China.

出版信息

Comput Math Methods Med. 2019 Oct 1;2019:7289273. doi: 10.1155/2019/7289273. eCollection 2019.

Abstract

Meningioma is the second most commonly encountered tumor type in the brain. There are three grades of meningioma by the standards of the World Health Organization. Preoperative grade prediction of meningioma is extraordinarily important for clinical treatment planning and prognosis evaluation. In this paper, we present a new deep learning model for assisting automatic prediction of meningioma grades to reduce the recurrence of meningioma. Our model is based on an improved LeNet-5 model of convolutional neural network (CNN) and does not require the extraction of the diseased tissue, which can greatly enhance the efficiency. To address the issue of insufficient and unbalanced clinical data of meningioma images, we use an oversampling technique which allows us to considerably improve the accuracy of classification. Experiments on large clinical datasets show that our model can achieve quite high accuracy (i.e., as high as 83.33%) for the classification of meningioma images.

摘要

脑膜瘤是大脑中第二常见的肿瘤类型。根据世界卫生组织的标准,脑膜瘤分为三个等级。术前预测脑膜瘤的等级对于临床治疗计划和预后评估非常重要。在本文中,我们提出了一种新的深度学习模型,用于辅助自动预测脑膜瘤的等级,以降低脑膜瘤的复发率。我们的模型基于卷积神经网络(CNN)的改进 LeNet-5 模型,不需要提取病变组织,这可以大大提高效率。为了解决脑膜瘤图像临床数据不足且不平衡的问题,我们使用了一种过采样技术,这使得我们可以显著提高分类的准确性。在大型临床数据集上的实验表明,我们的模型可以对脑膜瘤图像的分类达到相当高的精度(即高达 83.33%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bfe/6791208/49d39398b37c/CMMM2019-7289273.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验