Suppr超能文献

Neural modelling of the biodegradability of benzene derivatives.

作者信息

Devillers J

机构信息

CTIS, Lyon, France.

出版信息

SAR QSAR Environ Res. 1993;1(2-3):161-7. doi: 10.1080/10629369308028827.

Abstract

The aim of this paper was to explore the usefulness of a backpropagation neural network (BNN) to estimate the biodegradability of benzene derivatives. 127 chemicals selected from the BIODEG data bank (Syracuse Research Corporation, 1992) were described by means of 20 structural descriptors taking into account the nature and position of the substituents on the benzene ring. Three classes of biodegradability were selected and modelled from the BNN. A 20/5/3 BNN (alpha = 0.8 and eta = 0.5) correctly classified 92% (104/113) of the training and 86% (12/14) of the testing sets. The results were compared to those produced by the BIODEG probability program (Syracuse Research Corporation, Version 2.13).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验