Suppr超能文献

Role of antioxidants in the nitric oxide-elicited inhibition of dopamine uptake in cultured mesencephalic neurons. Insights into potential mechanisms of nitric oxide-mediated neurotoxicity.

作者信息

Cook J A, Wink D A, Blount V, Krishna M C, Hanbauer I

机构信息

Radiation Biology Branch, National Cancer Institute, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.

出版信息

Neurochem Int. 1996 May-Jun;28(5-6):609-17. doi: 10.1016/0197-0186(95)00125-5.

Abstract

Under aerobic conditions the addition of (C2N5)2N(N[O]NO)-.Na+(DEA/NO), S-nitroso-N-acetyl penicillamine and nitric oxide (NO)-saturated buffer, but not S-nitroso-L-glutathione, to dopamine solutions resulted in dopamine o-semiquinone formation that was dependent on the formation of a NO/oxygen intermediate. High pressure liquid chromatography (HPLC) electrochemical analysis of dopamine demonstrated that the DEA/NO-induced oxidation of dopamine was abrogated in the presence of the antioxidants, ascorbate and glutathione. NO spontaneously released from DEA/NO decreased [3H]dopamine accumulation in primary cultures of mesencephalic neurons in a dose-dependent fashion. In contrast, [3H] gamma-aminobutyric acid uptake by mesencephalic neurons tested under the same conditions was unchanged. When DEA/NO was added to incubation buffer that contained [3H]dopamine and the antioxidant, ascorbate or glutathione, [3H]dopamine uptake was also inhibited. These data excluded that oxidation of extracellular [3H]dopamine by the intermediates of the NO/O2 reaction could have caused this decrease. Instead, NO may have acted directly on a not yet identified target operative in the regulation of dopamine storage and release. Analysis of the rate constants for the NO reaction with ascorbate, glutathione and dopamine revealed that dopamine quinone formation was delayed by the presence of antioxidants. Since the formation of NO as well as neurotransmitter release are activated during ischemia reperfusion injury, it is possible that prolonged NO exposure could deplete antioxidants and facilitate the oxidation of dopamine and thereby cause neurotoxicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验