Suppr超能文献

Evidence for distinct vascular and tubular urea transporters in the rat kidney.

作者信息

Promeneur D, Rousselet G, Bankir L, Bailly P, Cartron J P, Ripoche P, Trinh-Trang-Tan M M

机构信息

INSERM U 90, Hôpital Necker, Paris, France.

出版信息

J Am Soc Nephrol. 1996 Jun;7(6):852-60. doi: 10.1681/ASN.V76852.

Abstract

Facilitated urea transport has been demonstrated in several mammalian tissues, including those of the collecting ducts and red blood cells. Two urea transporters have been recently cloned: UT2, expressed in rabbit inner medullary collecting ducts, and HUT11, expressed in human erythrocytes. Because of significant identity (63%) between these two transporters, and because HUT11 is also expressed in the human kidney, they could represent the same transporter with species-related differences in their-sequences. In the study presented here, two different cDNA fragments, corresponding to the rat equivalents (rUT2 and rUT11) of the two previously cloned urea transporters, were isolated by reverse transcription-polymerase chain reaction. These rat probes were used for Northern analysis of RNA extracted from rat tissues. From the following findings, the results show that rUT2 and rUT11 are two distinct urea transporters: (1) The two cDNA fragments isolated in the rat exhibit different sequences; (2) The mRNA for rUT2 is found exclusively in the kidney, with two transcripts (3.2- and 4.4-kilobase (kb)), whereas rUT11 (only one transcript, 4.2 kb) is present in the brain, spleen, kidney, and testis; (3) in the kidney, the inner stripe of the outer medulla expresses rUT11 mRNA and the short transcript of rUT2, whereas the inner medulla expresses rUT11 and the two rUT2 transcripts; (4) In hydronephrotic kidneys that have completely lost their tubular epithelium but have intact vasculature, rUT2 transcripts are no longer expressed, whereas expression of rUT11 is intensified; (5) Experimental chronic alterations in urine concentrating activity induced different changes in the expression of rUT2 and rUT11.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验