Suppr超能文献

Procoagulant activity and active calpain in platelet-derived microparticles.

作者信息

Pasquet J M, Toti F, Nurden A T, Dachary-Prigent J

机构信息

UMR 5533 CNRS, Hôpital Cardiologique du Haut-Lévèque, Pessac, France.

出版信息

Thromb Res. 1996 Jun 15;82(6):509-22. doi: 10.1016/0049-3848(96)00101-6.

Abstract

Microparticles are released during in vitro platelet activation and have been detected in vivo in several pathologies. Their characterization is of interest as they may play a potential role in hemostasis. Here, we report the formation of microparticles as the result of increases in intracellular Ca2+ brought about by inhibition of Ca(2+)-ATPases. They were isolated following centrifugation of the activated platelet suspension over a sucrose layer. Flow cytometric studies using annexin V-FITC as a probe for aminophospholipids, prothrombinase activity measurements and annexin V inhibition experiments enabled us to evaluate the procoagulant activity of microparticles prepared in this way. The efficiency of the annexin V inhibition (IC50 = 10-20 nM) of this activity confirmed significant anticoagulant properties for this protein. Microparticles also contained the glycoprotein IIb-IIIa complex, detected in flow cytometry at a density higher than on the remnant platelets. The activation of calpain, a Ca(2+)-dependent protease, in platelets was shown to be more efficient under conditions of a sudden Ca2+ influx. The microparticles contained only the active form of calpain detected by Western blotting using a monoclonal antibody able to recognize both the unactivated and the activated catalytic subunit of the enzyme. However, flow cytometry failed to find significant amounts of active calpain on the microparticle or on the platelet surface. Our results, while confirming the procoagulant activity of microparticles, also document for the first time the exclusive presence of the activated form of calpain, inferring a possible role for this protease in microparticle-mediated functions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验