Suppr超能文献

确定临床试验中的样本量和检验效能:被遗忘的关键要素。

Determining sample size and power in clinical trials: the forgotten essential.

作者信息

Grimes D A, Schulz K F

机构信息

Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, USA.

出版信息

Semin Reprod Endocrinol. 1996 May;14(2):125-31. doi: 10.1055/s-2007-1016320.

Abstract

Estimation of the sample size is a fundamental but usually ignored requirement of the randomized controlled trial (RCT). Indeed, the publication of small trials without consideration of sample size is worrisome from both medical and ethical viewpoints. Type II errors are common, and readers and investigators may reject worthwhile treatments and interventions. Before embarking on an RCT, the investigator must choose an alpha, a beta, and the rates of outcomes anticipated in both treatment groups. This should reflect the characteristics of the condition and its treatment. If limited sample size or available resources pose a problem, the use of continuous outcome measures, paired before-after measurements, and more common outcome measures can minimize sample size requirements. If these approaches are not satisfactory, then a multicenter trial may be in order.

摘要

样本量估计是随机对照试验(RCT)的一项基本要求,但通常被忽视。事实上,不考虑样本量而发表的小型试验,从医学和伦理角度来看都令人担忧。II类错误很常见,读者和研究者可能会拒绝有价值的治疗方法和干预措施。在开展RCT之前,研究者必须选择一个α水平、一个β水平以及两个治疗组预期的结局发生率。这应该反映疾病状况及其治疗的特征。如果样本量有限或可用资源存在问题,使用连续结局指标、前后配对测量以及更常见的结局指标可以将样本量要求降至最低。如果这些方法都不令人满意,那么可能需要进行多中心试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验