Wake M C, Gupta P K, Mikos A G
Department of Chemical Engineering, Cox Laboratory for Biomedical Engineering, Rice University, Houston TX 77251-1892, USA.
Cell Transplant. 1996 Jul-Aug;5(4):465-73. doi: 10.1177/096368979600500405.
We have fabricated pliable, porous, biodegradable scaffolds with poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) blends using a solvent-casting and particulate-leaching technique. Our study investigated the effects of four different processing parameters on pliability and pore morphology of the biodegradable scaffolds. The parameters investigated were the PLGA copolymer ratio, the PLGA/PEG blend ratio, the initial salt weight fraction, and the salt particle size. A wide range of shear moduli (0.59 to 9.55 MPa), porosities (0.798 to 0.942), and median pore diameters (71 to 154 microns) was able to be achieved by varying the combination of these parameters. Our study indicates that initial salt weight fraction and PLGA/PEG blend ratio have the most significant effects on the physico-mechanical properties of the scaffolds. Enhanced pliability of the three dimensional foams made with blends of PLGA and PEG is evidenced by the ability to roll them into a tube without macroscopic damage to the scaffold. Pliable polymer substrates hold great promise for regeneration of soft tissues such as skin, or those requiring a tubular conformation such as intestine or vascular grafts.
我们使用溶剂浇铸和颗粒沥滤技术,用聚(乳酸-乙醇酸)(PLGA)和聚(乙二醇)(PEG)共混物制备了柔韧、多孔、可生物降解的支架。我们的研究调查了四种不同加工参数对可生物降解支架柔韧性和孔隙形态的影响。所研究的参数为PLGA共聚物比例、PLGA/PEG共混比例、初始盐重量分数和盐颗粒大小。通过改变这些参数的组合,能够实现广泛的剪切模量(0.59至9.55兆帕)、孔隙率(0.798至0.942)和中值孔径(71至154微米)。我们的研究表明,初始盐重量分数和PLGA/PEG共混比例对支架的物理机械性能影响最为显著。由PLGA和PEG共混物制成的三维泡沫增强的柔韧性表现为能够将它们卷成管子而不对支架造成宏观损伤。柔韧的聚合物基质对于皮肤等软组织的再生,或对于诸如肠道或血管移植物等需要管状结构的组织的再生具有巨大潜力。