Suppr超能文献

大肠杆菌中RNA聚合酶σ亚基合成的调控:不同生长条件下四种σ亚基的细胞内水平

Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions.

作者信息

Jishage M, Iwata A, Ueda S, Ishihama A

机构信息

Department of Molecular Genetics, National Institute of Genetics, Mishima, Japan.

出版信息

J Bacteriol. 1996 Sep;178(18):5447-51. doi: 10.1128/jb.178.18.5447-5451.1996.

Abstract

By a quantitative Western immunoblot analysis, the intracellular levels of two principal sigma subunits, sigma 70 (sigma D, the rpoD gene product) and sigma 38 (sigma S, the rpoS gene product), and of two minor sigma subunits, sigma 54 (sigma N, the rpoN gene product) and sigma 28 (sigma F, the rpoF gene product), were determined in two Escherichia coli strains, W3110 and MC4100. The results indicated that the levels of sigma 54 and sigma 28 are maintained at 10 and 50%, respectively, of the level of sigma 70 in both strains growing at both exponential and stationary phases, but in agreement with the previous measurement for strain MC4100 (M. Jishage and A. Ishihama, J. Bacteriol. 177:6832-6835, 1995), the level of sigma 38 was undetectable at the exponential growth phase but increased at 30% of the level of sigma 70 at the stationary phase. Stress-coupled change in the intracellular level was observed for two sigma subunits: (i) the increase in sigma 38 level and the decrease in sigma 28 level upon exposure to heat shock at the exponential phase and (ii) the increase in sigma 38 level under high-osmolality conditions at both the exponential and stationary phases.

摘要

通过定量蛋白质免疫印迹分析,在两株大肠杆菌W3110和MC4100中测定了两种主要σ亚基(σ70,rpoD基因产物;σ38,rpoS基因产物)以及两种次要σ亚基(σ54,rpoN基因产物;σ28,rpoF基因产物)的细胞内水平。结果表明,在指数生长期和稳定期生长的两株菌中,σ54和σ28的水平分别维持在σ70水平的10%和50%,但与之前对MC4100菌株的测量结果一致(M. Jishage和A. Ishihama,《细菌学杂志》177:6832 - 6835,1995),σ38在指数生长期无法检测到,而在稳定期增加至σ70水平的30%。观察到两种σ亚基在细胞内水平上与应激相关的变化:(i)指数期暴露于热休克时,σ38水平增加而σ28水平降低;(ii)在指数期和稳定期的高渗条件下,σ38水平均增加。

相似文献

3
Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110.
J Bacteriol. 1997 Feb;179(3):959-63. doi: 10.1128/jb.179.3.959-963.1997.
8
Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli.
J Bacteriol. 1996 Mar;178(6):1607-13. doi: 10.1128/jb.178.6.1607-1613.1996.
10
Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease.
J Bacteriol. 1996 Jan;178(2):470-6. doi: 10.1128/jb.178.2.470-476.1996.

引用本文的文献

1
Modeling Control of Supercoiling Dynamics and Transcription Using DNA-Binding Proteins.
IEEE Control Syst Lett. 2024;8:2253-2258. doi: 10.1109/lcsys.2024.3406268. Epub 2024 May 27.
3
Regulatory Role of GgaR (YegW) for Glycogen Accumulation in K-12.
Microorganisms. 2024 Jan 5;12(1):115. doi: 10.3390/microorganisms12010115.
4
CO-based production of phytase from highly stable expression plasmids in Cupriavidus necator H16.
Microb Cell Fact. 2024 Jan 3;23(1):9. doi: 10.1186/s12934-023-02280-2.
5
RNAP Promoter Search and Transcription Kinetics in Live Cells.
J Phys Chem B. 2023 May 4;127(17):3816-3828. doi: 10.1021/acs.jpcb.2c09142. Epub 2023 Apr 25.
6
Accurate characterization of dynamic microbial gene expression and growth rate profiles.
Synth Biol (Oxf). 2022 Oct 15;7(1):ysac020. doi: 10.1093/synbio/ysac020. eCollection 2022.
7
Alteration of DNA supercoiling serves as a trigger of short-term cold shock repressed genes of E. coli.
Nucleic Acids Res. 2022 Aug 26;50(15):8512-8528. doi: 10.1093/nar/gkac643.
8
A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence.
Nucleic Acids Res. 2022 Jul 22;50(13):7570-7590. doi: 10.1093/nar/gkac116.
9
Ceragenins and Antimicrobial Peptides Kill Bacteria through Distinct Mechanisms.
mBio. 2022 Feb 22;13(1):e0272621. doi: 10.1128/mbio.02726-21. Epub 2022 Jan 25.
10
Cellular Self-Digestion and Persistence in Bacteria.
Microorganisms. 2021 Oct 31;9(11):2269. doi: 10.3390/microorganisms9112269.

本文引用的文献

1
Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli.
J Bacteriol. 1996 Mar;178(6):1607-13. doi: 10.1128/jb.178.6.1607-1613.1996.
3
A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division.
J Bacteriol. 1996 Feb;178(3):668-74. doi: 10.1128/jb.178.3.668-674.1996.
4
Mechanism of adverse conditions causing lack of flagella in Escherichia coli.
J Bacteriol. 1993 Apr;175(8):2236-40. doi: 10.1128/jb.175.8.2236-2240.1993.
6
Osmotic regulation of rpoS-dependent genes in Escherichia coli.
J Bacteriol. 1993 Jan;175(1):259-65. doi: 10.1128/jb.175.1.259-265.1993.
7
Adverse conditions which cause lack of flagella in Escherichia coli.
J Bacteriol. 1993 Apr;175(8):2229-35. doi: 10.1128/jb.175.8.2229-2235.1993.
8
Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator.
Science. 1993 Nov 19;262(5137):1277-80. doi: 10.1126/science.8235660.
9
In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N).
Mol Microbiol. 1993 Dec;10(5):903-9. doi: 10.1111/j.1365-2958.1993.tb00961.x.
10
The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli.
EMBO J. 1995 Mar 1;14(5):1043-55. doi: 10.1002/j.1460-2075.1995.tb07085.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验