Lohner K
Institut für Biophysik und Röntgenstrukturforschung, Osterreichische Akademie der Wissenschaften, Graz, Austria.
Chem Phys Lipids. 1996 Jul 15;81(2):167-84. doi: 10.1016/0009-3084(96)02580-7.
Plasmalogens are glycerophospholipids characterized by an alk-1'-enylether bond in position sn-1 and an acyl bond in position sn-2. These ubiquitous etherlipids exhibit a different molecular structure as compared to diacyl phospholipids. The most peculiar change is a perpendicular orientation of the sn-2 acyl chain at all segments to the membrane surface. This extended conformation results in an effectively longer aliphatic chain in plasmalogen than in the diacyl analog. Moreover, the lack of the carbonyl oxygen in position sn-1 affects the hydrophilicity of the headgroup and allows stronger intermolecular hydrogen-bonding between the headgroups of the lipid. These properties favour the formation of non-lamellar structures which are expressed in the high affinity of ethanolamine plasmalogen to adopt the inverse hexagonal phase. Such structures may be involved in membrane processes, either temporarily, like in membrane fusion or locally, e.g. to affect the activity of membrane-bound proteins. The predominant distribution of ethanolamine plasmalogens in some cellular membranes like nerve tissues or plasma membranes and their distinctly different properties in model membranes as compared to diacyl phospholipids impose the question, whether these differences are also manifested in the heterogeneous environment of biological membranes. The integration of biophysical studies and biochemical findings clearly indicated that the high propensity of ethanolamine plasmalogen to form non-lamellar structures is reflected in several physiological functions. So far it seems to be evident that ethanolamine plasmalogens play an important role in maintaining the balance between bilayer and non-lamellar phases which is crucial for proper cell function. Furthermore, they are the major phospholipid component of inverse hexagonal phase inclusions in native retina and are able to mediate membrane fusion as demonstrated between neurotransmitter vesicles and presynaptic membranes.
缩醛磷脂是甘油磷脂,其特征在于sn-1位上有一个alk-1'-烯基醚键,sn-2位上有一个酰基键。与二酰基磷脂相比,这些普遍存在的醚脂具有不同的分子结构。最特殊的变化是sn-2酰基链在所有片段中都垂直于膜表面。这种伸展构象导致缩醛磷脂中的脂肪链比二酰基类似物中的脂肪链实际上更长。此外,sn-1位上缺乏羰基氧会影响头基的亲水性,并允许脂质头基之间形成更强的分子间氢键。这些特性有利于形成非层状结构,这在乙醇胺缩醛磷脂对反相六角相的高亲和力中得以体现。这样的结构可能参与膜过程,要么是暂时的,如在膜融合中,要么是局部的,例如影响膜结合蛋白的活性。乙醇胺缩醛磷脂在某些细胞膜如神经组织或质膜中的主要分布,以及它们在模型膜中与二酰基磷脂明显不同的性质,引发了一个问题,即这些差异在生物膜的异质环境中是否也会表现出来。生物物理研究和生化发现的结合清楚地表明,乙醇胺缩醛磷脂形成非层状结构的高倾向反映在多种生理功能中。到目前为止,似乎很明显,乙醇胺缩醛磷脂在维持双层和非层状相之间的平衡中起着重要作用,而这对细胞的正常功能至关重要。此外,它们是天然视网膜中反相六角相内含物的主要磷脂成分,并且能够介导神经递质囊泡与突触前膜之间的膜融合,正如所证明的那样。