Suppr超能文献

A non-invasive vibrating calcium-selective electrode measures acetylcholine-induced calcium flux across the sarcolemma of a smooth muscle.

作者信息

Devlin C L, Smith P J

机构信息

Department of Biology, Penn State University Abington 19001, USA.

出版信息

J Comp Physiol B. 1996;166(4):270-7. doi: 10.1007/BF00262871.

Abstract

To determine possible sources of Ca2+ during excitation-contraction coupling in smooth muscle, a vibrating Ca2(+)-selective electrode was used to measure Ca2+ flux during the process of contraction. The smooth muscle model was the longitudinal muscle of the body wall of a sea cucumber Sclerodactyla briareus. Because acetylcholine caused slow contractions of the muscle that were inhibited by Ca2+ channel blockers diltiazem and verapamil in earlier mechanical studies, we chose a vibrating Ca2(+)-selective electrode as our method to test the hypothesis that acetylcholine may be stimulating Ca2+ influx across the sarcolemma, providing a Ca2+ source during excitation-contraction coupling. Acetylcholine treatment stimulated a net Ca2+ efflux that was both dose and time dependent. We then tested two L-type Ca2+ channel blockers, diltiazem and verapamil, and two non-specific Ca2+ blockers, cobalt (Co2+) and lanthanum (La3+) on acetylcholine-induced Ca2+ flux. All four Ca2+ blockers tested potently inhibited Ca2+ efflux induced by physiological doses of acetylcholine. We propose that the acetylcholine-induced Ca2+ efflux was the result of, first, Ca2+ influx through voltage-sensitive L-type Ca2+ channels, then the rapid extrusion of Ca2+ by an outwardly directed carrier such as the Na-Ca exchanger as suggested by Li+ substitution experiments. The vibrating Ca2+ electrode has provided new insights on the active and complex role the sarcolemma plays in Ca2+ homeostasis and regulating Ca2+ redistribution during excitation-contraction coupling.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验