Wilkemeyer M F, Smith K L, Zarei M M, Benke T A, Swann J W, Angelides K J, Eisensmith R C
Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA.
J Neurosci Res. 1996 Jan 15;43(2):161-74. doi: 10.1002/(SICI)1097-4547(19960115)43:2<161::AID-JNR4>3.0.CO;2-E.
Genetic manipulation offers great potential for studying the molecular and cellular processes which control or regulate the complex developmental properties of neurons. Gene transfer into neurons, however, is notoriously difficult. In this study we have used a replication-defective adenovirus (Adv/RSV beta gal), expressing beta-galactosidase (beta-gal) as a reporter gene, to infect dissociated cultures of rat hippocampal neurons and hippocampal slice cultures. Because future studies will require either long-term (e.g., developmental) or short-term (e.g., electrophysiological) expression of recombinant genes in neuronal cultures, we have optimized infection conditions for each situation. The Adv/RSV beta gal construct infects neurons and glial cells equally well, with no apparent alterations in cellular morphology. In slice cultures, the same efficiency and temporal control of beta-gal expression following Adv/RSV beta gal infection was achieved. Focal application of the adenoviruses, by microinjection, permitted infection of discrete subregions within the hippocampal explants. Whole cell recordings of dissociated hippocampal neurons and field recordings from the explant cultures, infected with Adv/RSV beta gal at low multiplicities of infection, indicated no significant alteration in the electrophysiological profiles of neurons in these cultures. The results demonstrate the utility of adenoviruses as gene transfer vectors for primary cultures of neurons. Adenovirus-mediated gene transfer into slice cultures also provides an opportunity to study development or plasticity in an environment where the circuitry and cytoarchitecture of the tissue are preserved and the areas of genetic manipulation can be spatially isolated.
基因操作在研究控制或调节神经元复杂发育特性的分子和细胞过程方面具有巨大潜力。然而,将基因导入神经元的操作非常困难。在本研究中,我们使用了一种复制缺陷型腺病毒(Adv/RSV β半乳糖苷酶),它表达β-半乳糖苷酶(β-gal)作为报告基因,来感染大鼠海马神经元的解离培养物和海马脑片培养物。由于未来的研究将需要在神经元培养物中长期(如发育相关)或短期(如电生理相关)表达重组基因,我们针对每种情况优化了感染条件。Adv/RSV β半乳糖苷酶构建体能同样有效地感染神经元和神经胶质细胞,且细胞形态无明显改变。在脑片培养中,Adv/RSV β半乳糖苷酶感染后β-gal表达的效率和时间控制情况相同。通过显微注射局部应用腺病毒,可使海马外植体中的离散亚区域受到感染。对以低感染复数感染Adv/RSV β半乳糖苷酶的解离海马神经元进行全细胞记录以及对脑片培养物进行场记录,结果表明这些培养物中神经元的电生理特性没有显著改变。这些结果证明了腺病毒作为神经元原代培养基因转移载体的实用性。腺病毒介导的基因转移到脑片培养物中,也为在组织的电路和细胞结构得以保留且基因操作区域可在空间上分离的环境中研究发育或可塑性提供了机会。