Casaccia-Bonnefil P, Benedikz E, Shen H, Stelzer A, Edelstein D, Geschwind M, Brownlee M, Federoff H J, Bergold P J
Program of Anatomy and Cell Biology, State University of New York-Health Science Center at Brooklyn 11203.
J Neurosci Methods. 1993 Dec;50(3):341-51. doi: 10.1016/0165-0270(93)90040-x.
Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector that directs expression of E. coli beta-galactosidase (beta-gal), were microapplied into stratum pyramidale or stratum granulosum of slice cultures. Twenty-four hours later, a cluster of transduced cells expressing beta-gal was observed at the microapplication site. Gene transfer by microapplication was both effective and rapid. The titer of the HSVlac stocks was determined on NIH3T3 cells. Eighty-three percent of the beta-gal forming units successfully transduced beta-gal after microapplication to slice cultures. beta-Gal expression was detected as rapidly as 4 h after transduction into cultures of fibroblasts or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions.