Suppr超能文献

Temporal mechanisms underlying flicker detection and identification for red-green and achromatic stimuli.

作者信息

Metha A B, Mullen K T

机构信息

McGill Vision Research, Department of Ophthalmology (H4-14), McGill University, Montreal, Quebec, Canada.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 1996 Oct;13(10):1969-80. doi: 10.1364/josaa.13.001969.

Abstract

We have simultaneously measured detection and temporal frequency identification for both red-green isoluminant and achromatic stimuli over a range of temporal frequencies for two observers. Results show that temporal frequency identification can be made along the temporal frequency dimension for both red-green and achromatic stimuli at contrasts close to detection threshold. In general, temporal frequency identification was better for the achromatic than for the red-green stimuli; however, the level of chromatic identification performance was still sufficient to permit us to reject the notion that the red-green mechanism embodies a single temporal filter. We have developed a model based on signal detection theory that assumes that detection and identification both depend on the properties of the temporal filters underlying each mechanism. From this we have derived putative underlying shapes and sensitivities for the temporal filters of the red-green and achromatic mechanisms that comprise a low-pass and a bandpass filter for red-green color vision and two bandpass filters for luminance vision. Finally, we suggest that the relative perceived slowing of isoluminant stimuli may be accounted for by a common motion analysis subserved by different front-end temporal filters for red-green and achromatic motion signals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验