Lusher J M
Department of Hematology/Oncology, Children's Hospital of Michigan, Detroit 48201, USA.
Am J Obstet Gynecol. 1996 Sep;175(3 Pt 2):778-83. doi: 10.1016/s0002-9378(96)80084-6.
After clinical assessment, pertinent history, and family history, the clinician often has a good idea concerning the cause of a patient's bleeding. The most appropriate laboratory tests can then be ordered. Routine screening tests include a complete blood cell count, platelet count, and evaluation of a peripheral blood sample, a prothrombin time, and an activated partial thromboplastin time. Thrombocytopenia may result from idiopathic thrombocytopenic purpura, disseminated intravascular coagulation, or, less commonly, acute leukemia, aplastic anemia, thrombotic thrombocytopenic purpura, or a particular drug that a patient is taking. Again, the patient's history, physical findings, and evaluation of a well-prepared peripheral blood smear will be helpful in determining the cause of the patient's thrombocytopenia. An isolated prolongation of the activated partial thromboplastin time may result from low levels of factors VIII, IX, or XI. A slightly prolonged activated partial thromboplastin time and a moderate decrease in factor VIII may reflect von Willebrand disease or the "carrier" state for hemophilia A. In women a greatly prolonged activated partial thromboplastin time and very low levels of factor VIII (< 3%) most often result from an acquired factor VIII inhibitor (autoantibody against factor VIII) or from severe (type III) von Willebrand disease. If von Willebrand disease is suspected (because of menorrhagia with or without other mucous membrane bleeding, a positive family history, and a prolonged activated partial thromboplastin time), more specific laboratory tests for this disease should be done. These include assays of factor VIII, von Willebrand factor antigen, von Willebrand factor activity (measured by the ristocetin cofactor assay), and template bleeding time. In von Willebrand disease the defect is in von Willebrand factor. The affected individual may have subnormal levels of structurally and functionally normal von Willebrand factor (this is called "classic" or type I von Willebrand disease) or may produce von Willebrand factor that is structurally and functionally abnormal (von Willebrand disease type 2). Individuals who inherit a gene for von Willebrand disease from both parents have severe (type 3) von Willebrand disease and will have extremely low levels (< 3%) of von Willebrand factor and factor VIII and will have a very prolonged bleeding time. In most populations type I disease is the most common form, whereas type 3 is the least commonly encountered form. It should be noted that levels of von Willebrand factor can be influenced by the patient's blood type (persons who have blood type AB have 60% to 70% higher levels than do persons who have blood type O) and can be elevated during pregnancy, stress, and hyperthyroidism. The two major functions of von Willebrand factor are to serve as a "bridge" between platelets and injury sites in blood vessel walls and to protect circulating factor VIII from rapid proteolytic degradation. Thus, if a patient has either too little or functionally abnormal von Willebrand factor, the bleeding time will be prolonged and factor VIII will be decreased (because it is not being protected by von Willebrand factor). It should be determined which type of von Willebrand disease a particular patient has because treatment depends on type. Multimeric analysis of von Willebrand factor can be done with use of sodium dodecyl sulfate gels, radiolabeled antibody to von Willebrand's factor, and autoradiography. This will allow visualization of the multimeric structure of von Willebrand factor. In type I disease all bands are present, whereas in the type 2 variants 2A and 2B no high-molecular-weight multimers are seen. Desmopressin acetate (which is available in parenteral form for intravenous use and in a highly concentrated intranasal spray formulation) is the treatment of choice for classic type I disease. The drug effects a rapid release of von Willebrand factor from endothelial cell stor
经过临床评估、相关病史及家族史询问后,临床医生通常对患者出血原因有了很好的判断。然后可安排最恰当的实验室检查。常规筛查检查包括全血细胞计数、血小板计数、外周血样本评估、凝血酶原时间及活化部分凝血活酶时间。血小板减少可能由特发性血小板减少性紫癜、弥散性血管内凝血引起,或较少见地由急性白血病、再生障碍性贫血、血栓性血小板减少性紫癜或患者正在服用的某种特定药物导致。同样,患者的病史、体格检查结果以及精心制备的外周血涂片评估,将有助于确定患者血小板减少的原因。活化部分凝血活酶时间单独延长可能是由于Ⅷ、Ⅸ或Ⅺ因子水平降低。活化部分凝血活酶时间轻度延长且Ⅷ因子中度降低,可能反映血管性血友病或甲型血友病的“携带者”状态。在女性中,活化部分凝血活酶时间大幅延长且Ⅷ因子水平极低(<3%),最常见的原因是获得性Ⅷ因子抑制剂(针对Ⅷ因子的自身抗体)或重度(Ⅲ型)血管性血友病。如果怀疑患有血管性血友病(因月经过多伴或不伴有其他黏膜出血、家族史阳性及活化部分凝血活酶时间延长),应进行针对该疾病的更特异性实验室检查。这些检查包括Ⅷ因子测定、血管性血友病因子抗原测定、血管性血友病因子活性测定(通过瑞斯托霉素辅因子测定法测量)及模板出血时间测定。在血管性血友病中,缺陷在于血管性血友病因子。受累个体可能具有结构和功能正常的血管性血友病因子水平低于正常(这称为“经典型”或Ⅰ型血管性血友病),或者可能产生结构和功能异常的血管性血友病因子(2型血管性血友病)。从父母双方均遗传血管性血友病基因的个体患有重度(3型)血管性血友病,其血管性血友病因子和Ⅷ因子水平极低(<3%),出血时间会非常延长。在大多数人群中,Ⅰ型疾病是最常见的形式,而3型是最不常遇到的形式。应当注意,血管性血友病因子水平可受患者血型影响(AB血型的人比O血型的人水平高60%至70%),并且在妊娠、应激和甲状腺功能亢进期间可升高。血管性血友病因子的两个主要功能是作为血小板与血管壁损伤部位之间的“桥梁”,以及保护循环中的Ⅷ因子免受快速的蛋白水解降解。因此,如果患者的血管性血友病因子过少或功能异常,出血时间将延长,Ⅷ因子水平将降低(因为它未受到血管性血友病因子的保护)。应确定特定患者患有哪种类型的血管性血友病,因为治疗取决于类型。可使用十二烷基硫酸钠凝胶、血管性血友病因子的放射性标记抗体及放射自显影技术对血管性血友病因子进行多聚体分析。这将使血管性血友病因子的多聚体结构可视化。在Ⅰ型疾病中,所有条带均存在,而在2型变异型2A和2B中,未见高分子量多聚体。醋酸去氨加压素(有可供静脉注射的肠胃外剂型和高浓度鼻内喷雾剂型)是经典Ⅰ型疾病的首选治疗药物。该药物可使血管性血友病因子从内皮细胞储存部位快速释放。