Xu Y, Siegenthaler P A
Laboratoire de Physiologie Végétale, Université de Neuchâtel, Switzerland.
Lipids. 1996 Feb;31(2):223-9. doi: 10.1007/BF02522624.
A reversed-phase high-performance liquid chromatography technique was developed to separate, identify, and quantify individual phosphatidylglycerol (PG) molecular species in thylakoid membranes isolated from higher plant leaves. PG was first separated by thin-layer chromatography; then the dinitrobenzoyl derivatives of diacylglycerols produced after phospholipase C hydrolysis of PG were separated by a C18 reversed-phase column and detected at 254 nm. A linear response of the detector was observed in the range of 0.025 to 12 nmol of PG molecular species. It was established that there was an excellent correlation (r = 0.996) between the carbon and double-bond number in the aliphatic residues and the relative retention time of dinitrobenzoyl derivatives. A new equivalent carbon number value (ECN*) which takes into consideration the number of cis-(nc) and trans-(nt) double bonds per molecular species was defined as ECN* = CN - 2nc - nt, where CN is the number of carbon atoms in the aliphatic residues. The logarithm of the retention time increased linearily as a function of ECN* value. However, in this type of correlation, it may happen that two molecular species of PG having distinct relative retention times had the same ECN* value. In this case, the two molecular species can be identified by the linear correlation (r = 1) existing between the reciprocal of the relative retention time and the number of double bonds (0 < or = n < or = 3) in the separate 18:n/delta 3-trans-hexadecenoic acid -16:1(3t)- and 18:n/16:0 molecular species series. The advantages of this method are good separation, cohort elution time, quantitative precision, and predictable retention times of PG molecular species from chloroplast membranes. The method has been used routinely to identify the ten PG molecular species of thylakoid membranes in squash, potato, lettuce, and spinach leaf: 18:3/16:1(3t), 18:3/16:0, 18:2/16:1(3t), 18:2/16:0, 18:1/16:1(3t), 18:1/16:0, 18:0/16:1(3t), 18:0/16:0, 16:0/16:1(3t), and 16:0/16:0.
开发了一种反相高效液相色谱技术,用于分离、鉴定和定量从高等植物叶片中分离出的类囊体膜中的各个磷脂酰甘油(PG)分子种类。PG首先通过薄层色谱法分离;然后,PG经磷脂酶C水解后产生的二酰基甘油的二硝基苯甲酰衍生物通过C18反相柱分离,并在254nm处检测。在0.025至12nmol的PG分子种类范围内观察到检测器的线性响应。已确定脂肪族残基中的碳数和双键数与二硝基苯甲酰衍生物的相对保留时间之间存在极好的相关性(r = 0.996)。定义了一个新的等效碳数(ECN*)值,该值考虑了每个分子种类的顺式(nc)和反式(nt)双键数,即ECN* = CN - 2nc - nt,其中CN是脂肪族残基中的碳原子数。保留时间的对数作为ECN值的函数呈线性增加。然而,在这种类型的相关性中,可能会出现两种具有不同相对保留时间的PG分子种类具有相同ECN值的情况。在这种情况下,可以通过相对保留时间的倒数与单独的18:n/δ3-反式-十六碳烯酸-16:1(3t)-和18:n/16:0分子种类系列中的双键数(0≤n≤3)之间存在的线性相关性(r = 1)来鉴定这两种分子种类。该方法的优点是分离效果好、洗脱时间一致、定量精度高以及叶绿体膜中PG分子种类的保留时间可预测。该方法已常规用于鉴定南瓜、马铃薯、生菜和菠菜叶片类囊体膜中的十种PG分子种类:18:3/16:1(3t)、18:3/16:0、18:2/16:1(3t)、18:2/16:0、18:1/16:1(3t)、18:1/16:0、18:0/16:1(3t)、18:0/16:0、16:0/16:1(3t)和16:0/16:0。