Suppr超能文献

使用瞬态诱发耳声发射(TEOAE)参数识别听力损失:理论基础与初步结果。

Identification of hearing loss using TEOAE descriptors: theoretical foundations and preliminary results.

作者信息

Hatzopoulos S, Mazzoli M, Martini A

机构信息

ENT Department, University of Ferrara, Italy.

出版信息

Audiology. 1995 Sep-Oct;34(5):248-59. doi: 10.3109/00206099509071917.

Abstract

It was hypothesized that the relationship between transiently evoked otoacoustic emission (TEOAE) signals and the functional status of the outer hair cells provides an opportunity to design a clinical procedure that can evaluate the normality of cochlear function. To discriminate normal subjects from subjects suffering from mild to moderate hearing loss (HL), it was assumed that every subject population has unique and discrete TEOAE signal descriptors. The main classification algorithm was based on a discriminant analysis of raw fast Fourier transform data. When it was applied to a sample set of TEOAE recordings (from 56 normal and 68 HL subjects) elicited from 68-dB SPL click stimuli, it correctly identified 90.2% of the normal and 87.5% of the HL subjects. The same algorithm yielded an 85.5% discrimination between TEOAE recordings from conductive and cochlear HL cases.

摘要

据推测,瞬态诱发耳声发射(TEOAE)信号与外毛细胞功能状态之间的关系为设计一种可评估耳蜗功能正常性的临床程序提供了契机。为了区分正常受试者与患有轻度至中度听力损失(HL)的受试者,假定每个受试者群体都有独特且离散的TEOAE信号描述符。主要分类算法基于对原始快速傅里叶变换数据的判别分析。当将其应用于由68 dB SPL短声刺激引出的TEOAE记录样本集(来自56名正常受试者和68名HL受试者)时,它正确识别出90.2%的正常受试者和87.5%的HL受试者。相同算法在传导性和耳蜗性HL病例的TEOAE记录之间实现了85.5%的判别率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验