Suppr超能文献

瞬态诱发耳声发射的临床适用性:听力损失的识别与分类

Clinical applicability of transient evoked otoacoustic emissions: identification and classification of hearing loss.

作者信息

Hatzopoulos S, Prosser S, Mazzoli M, Rosignoli M, Martini A

机构信息

University of Ferrara, ENT Department, Service of Audiology, Ferrara, Italy.

出版信息

Audiol Neurootol. 1998 Nov-Dec;3(6):402-18. doi: 10.1159/000013809.

Abstract

The study aimed at the development of a clinically applicable methodology that could: (1) discriminate transient evoked otoacoustic emission (TEOAE) recordings from normal hearing or hearing impaired individuals; (2) classify the nature of the hearing loss as conductive or as cochlear, and (3) define clear-cut TEOAE clinical criteria. A classification algorithm based on a multivariate discriminant analysis of fast Fourier transform data from recordings evoked by click stimuli of 50 +/- 2, 62 +/- 2, 68 +/- 2 and 80 +/- 2 dB SPL was used to discriminate 302 normal subjects from 383 subjects suffering from mild to moderate hearing losses. The best discriminant model (QDF80) produced a sensitivity of 93.8% and a specificity of 79.4%. When extra correlation criteria were serially applied to the classification outcome, the specificity was increased to 85.3%, but the sensitivity was marginally decreased to 91.7%. The classification of the correctly identified hearing-impaired cases yielded 93.8% identification of conductive and 75.1% identification of cochlear cases. A sensitivity analysis of the misclassified hearing-impaired cases suggested that the TEOAE spectra are well correlated with the 2-kHz but poorly correlated with the 4-kHz octave frequency.

摘要

该研究旨在开发一种临床适用的方法,该方法能够:(1)区分正常听力或听力受损个体的瞬态诱发耳声发射(TEOAE)记录;(2)将听力损失的性质分类为传导性或耳蜗性,以及(3)定义明确的TEOAE临床标准。基于对由50±2、62±2、68±2和80±2 dB SPL的短声刺激诱发的记录进行快速傅里叶变换数据的多变量判别分析的分类算法,用于区分302名正常受试者和383名患有轻度至中度听力损失的受试者。最佳判别模型(QDF80)的灵敏度为93.8%,特异性为79.4%。当将额外的相关性标准依次应用于分类结果时,特异性提高到85.3%,但灵敏度略有下降至91.7%。对正确识别的听力受损病例的分类得出,传导性病例的识别率为93.8%,耳蜗性病例的识别率为75.1%。对误分类的听力受损病例的敏感性分析表明,TEOAE频谱与2 kHz相关性良好,但与4 kHz倍频程频率相关性较差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验