Vickers A E, Fischer V, Connors M S, Biggi W A, Heitz F, Baldeck J P, Brendel K
Sandoz Pharma Ltd, Basel, Switzerland.
Eur J Drug Metab Pharmacokinet. 1996 Jan-Mar;21(1):43-50. doi: 10.1007/BF03190277.
Species differences in the biotransformation of the antiemetic tropisetron, a potent 5-hydroxytryptamine type 3 (5-HT3) receptor antagonist, were evident in liver slice incubates of human, rat and dog, and reflected the species differences observed in vivo with respect to the relative importance of individual pathways. The dominant biotransformation pathway of tropisetron (10 microM) in human liver slices was formation of 6-hydroxy-tropisetron, whereas in rat liver slices it was 5-hydroxy-tropisetron, and in dog liver slices N-oxide formation. Initial rates of tropisetron metabolite formation in the liver slices (8 mm in diameter, 200 +/- 25 microns thickness) of human (83 +/- 61 pmol/h/mg slice protein), rat (413 +/- 98 pmol/h/mg slice protein) and dog (426 +/- 38 pmol/h/mg slice protein) would predict less of a first-pass effect in humans compared to the rat or the dog. For human and rat, the prediction matched well with the species ranking of tropisetron bioavailability; however, for dog the in vitro data overestimated the apparent first-pass effect. The jejunum is not expected to contribute to the first-pass effect in humans, since human jejunum microsomes did not metabolize tropisetron. The major organ of excretion for tropisetron and its metabolites is the kidney, but the contribution of the kidney to the overall metabolism of tropisetron would be small. Species independent N-oxide formation (2-12 pmol/h/mg slice protein) was the major pathway in human, rat and dog kidney slices, and was comparable to N-oxide formation in the rat and human liver slices but was 1/10 the rate in dog liver slices. This study has demonstrated that the liver is the primary site of tropisetron biotransformation, and the usefulness of organ slices to characterize cross species differences in the dominant biotransformation pathways.
强效5-羟色胺3型(5-HT3)受体拮抗剂、止吐药托烷司琼在生物转化方面的种属差异,在人、大鼠和犬的肝切片孵育实验中很明显,这反映了在体内观察到的关于各个代谢途径相对重要性的种属差异。在人肝切片中,托烷司琼(10微摩尔)的主要生物转化途径是生成6-羟基托烷司琼,而在大鼠肝切片中是5-羟基托烷司琼,在犬肝切片中则是生成N-氧化物。人(83±61皮摩尔/小时/毫克切片蛋白)、大鼠(413±9�皮摩尔/小时/毫克切片蛋白)和犬(426±38皮摩尔/小时/毫克切片蛋白)肝切片(直径8毫米,厚度200±25微米)中托烷司琼代谢物的初始生成速率表明,与大鼠或犬相比,人肝脏的首过效应较小。对于人和大鼠,这一预测与托烷司琼生物利用度的种属排名相符;然而,对于犬,体外数据高估了表观首过效应。预计空肠对人肝脏的首过效应没有影响,因为人空肠微粒体不会代谢托烷司琼。托烷司琼及其代谢物的主要排泄器官是肾脏,但肾脏对托烷司琼整体代谢的贡献较小。种属非依赖性的N-氧化物生成(2-12皮摩尔/小时/毫克切片蛋白)是人和大鼠及犬肾切片中的主要途径,与人及大鼠肝切片中的N-氧化物生成相当,但仅为犬肝切片中生成速率的1/10。本研究表明,肝脏是托烷司琼生物转化的主要部位,且器官切片在表征主要生物转化途径的种属差异方面具有实用性。