Díaz Baños F G, Bordas J, Lowy J, Svensson A
Departamento de Química Física, Universidad de Murcia, Spain.
Biophys J. 1996 Aug;71(2):576-89. doi: 10.1016/S0006-3495(96)79292-5.
Poisson-Boltzmann calculations of the distribution of electrostatic potentials around an actin filament in physiological-strength solutions show that negative isopotential surfaces protrude into the solvent. Each protrusion follows the actin two-start helix and is located on the sites implicated in the formation of the actomyosin complex. Molecular dynamic calculations on the S1 portion of the myosin molecule indicate that in the presence of ATP the crystallographically invisible loops (comprising residues 624-649 and 564-579) remain on the surface, whereas in the absence of ATP they can move toward the actin-binding sites and experience electrostatic forces that range from 1 to 10 pN. The molecular dynamics calculations also suggest that during the ATP cycle there exist at least three states of electrostatic interactions between the loops and actin. Every time a new interaction is formed, the strain in the myosin head increases and the energy of the complex decreases by 2kT to 5kT. This can explain muscular contraction in terms of a Huxley-Simmons-type mechanism, while requiring only rearrangements of small mobile S1 segments rather than the large shape changes in the myosin molecule postulated by the conventional tilting head model.
在生理强度溶液中,对肌动蛋白丝周围静电势分布的泊松-玻尔兹曼计算表明,负等势面突出到溶剂中。每个突出部分沿着肌动蛋白的双起始螺旋,并位于与肌动球蛋白复合物形成有关的位点上。对肌球蛋白分子S1部分的分子动力学计算表明,在有ATP存在时,晶体学上不可见的环(由624 - 649和564 - 579位残基组成)留在表面,而在没有ATP时,它们可以向肌动蛋白结合位点移动,并受到1到10皮牛的静电力作用。分子动力学计算还表明,在ATP循环过程中,环与肌动蛋白之间至少存在三种静电相互作用状态。每次形成新的相互作用时,肌球蛋白头部的应变增加,复合物的能量降低2kT到5kT。这可以用赫胥黎-西蒙斯型机制来解释肌肉收缩,同时只需要小的可移动S1片段重新排列,而不是传统倾斜头部模型所假设的肌球蛋白分子的大形状变化。