Kaul P, Silverman J, Shen W H, Blanke S R, Huynh P D, Finkelstein A, Collier R J
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
Protein Sci. 1996 Apr;5(4):687-92. doi: 10.1002/pro.5560050413.
Acidic conditions within the endosomal lumen induce the T domain of receptor-bound diphtheria toxin (DT) to insert into the endosomal membrane and mediate translocation of the toxin's catalytic domain to the cytosol. A conformational rearrangement in the toxin occurring near pH5 allows a buried apolar helical hairpin of the native T domain (helices TH8 and TH9) to undergo membrane insertion. If the inserted hairpin spans the bilayer, as hypothesized, then the two acidic residues within the TL5 interhelical loop, Glu 349 and Asp 352, should become exposed at the neutral cytosolic face of the membrane and reionize. To investigate the roles of these residues in toxin action, we characterized mutant toxins in which one or both acidic residues had been replaced with nonionizable ones. Each of two double mutants examined showed a several-fold reduction in cytotoxicity in 24-h Vero cell assays (sixfold for E349A + D352A and fourfold for E349Q + D352N), whereas the individual E349Q and D352N mutations caused smaller reductions in toxicity. The single and double mutations also attenuated the toxin's ability to permeabilize Vero cells to Rb+ at low pH and decreased channel formation by the toxin in artificial planar bilayers. Neither of the double mutations affected the pH-dependence profile of the toxin's conformational rearrangement in solution, as measured by binding of the hydrophobic fluorophore, 2-p-toluidinyl-naphthalene 6-sulfonate. The results demonstrate that, although there is no absolute requirement for an acidic residue within the TL5 loop for toxicity, Glu 349 and Asp 352 do significantly enhance the biological activity of the protein. The data are consistent with a model in which ionization of these residues at the cytosolic face of the endosomal membrane stabilizes the TH8/TH9 hairpin in a transmembrane configuration, thereby facilitating channel formation and translocation of the toxin's catalytic chain.
内体腔中的酸性环境会诱导受体结合型白喉毒素(DT)的T结构域插入内体膜,并介导毒素催化结构域向胞质溶胶的转运。毒素在pH5附近发生的构象重排,使天然T结构域(螺旋TH8和TH9)中一个被掩埋的非极性螺旋发夹结构能够进行膜插入。如果如假设的那样,插入的发夹结构跨越双层膜,那么TL5螺旋间环内的两个酸性残基,即Glu 349和Asp 352,应该会在膜的中性胞质面暴露并重新电离。为了研究这些残基在毒素作用中的作用,我们对其中一个或两个酸性残基被不可电离残基取代的突变毒素进行了表征。在24小时的Vero细胞试验中,检测的两个双突变体中的每一个都显示出细胞毒性降低了几倍(E349A + D352A降低了六倍,E349Q + D352N降低了四倍),而单个E349Q和D352N突变导致的毒性降低较小。单突变和双突变还减弱了毒素在低pH下使Vero细胞对Rb+通透的能力,并减少了毒素在人工平面双层膜中形成通道的能力。通过疏水荧光团2-对甲苯氨基萘-6-磺酸盐的结合来测量,两个双突变都没有影响毒素在溶液中构象重排的pH依赖性曲线。结果表明,虽然TL5环内的酸性残基对毒性没有绝对要求,但Glu 349和Asp 352确实显著增强了该蛋白的生物活性。这些数据与一个模型一致,即这些残基在内体膜胞质面的电离稳定了处于跨膜构型的TH8/TH9发夹结构,从而促进通道形成和毒素催化链的转运。