Simmers J, Meyrand P, Moulins M
Laboratoire de Neurobiologie et Physiologie Comparees, Universite de Bordeaux I & CNRS, Arcachon, France.
J Physiol Paris. 1995;89(4-6):195-208. doi: 10.1016/0928-4257(96)83636-9.
The operation of central pattern generators (CPGs), oscillatory neural circuits responsible for rhythmic motor behavior, is now known to depend both on the synaptic interactions between constituent neurons and their intrinsic membrane properties (oscillatory, plateauing, etc). Moreover, these synaptic and cellular properties are not invariant, but are subject to a wide range of neuromodulatory influences that, by modifying the bioelectrical character of individual neurons and/or the strength of their synapses, are able to adapt the output of a given CPG circuit to the changing needs of the animal. Despite this ability to produce different functional configurations, however, the assumption remains of a CPG as a predefined assemblage of interconnected neurons dedicated to a particular behavior and functionally distinguishable from other circuits responsible for other tasks. However, our recent studies on the stomatogastric nervous system (STNS) of crustacea have begun to question this concept of the CPG as a discrete and identifiable entity within the central nervous system. Here we review evidence showing that under neuromodulatory instruction, individual neurons can participate in different oscillatory motor circuits and hence more than one rhythmic behaviour, and even more profoundly, preexisting networks can be dismantled to specify dynamically a new circuit for an entirely different behaviour. This de novo network construction is achieved again by neuromodulatory-induced alterations in the oscillatory and synaptic properties of individual target neurons. On this basis, therefore, a functional CPG network must be seen in a more dynamic context than previously thought since it may exist only in a particular behavioural situation dictated by modulatory influences.
中枢模式发生器(CPG)是负责节律性运动行为的振荡神经回路,现在已知其运作既依赖于组成神经元之间的突触相互作用,也依赖于它们的固有膜特性(振荡、平台化等)。此外,这些突触和细胞特性并非一成不变,而是受到广泛的神经调节影响,这些影响通过改变单个神经元的生物电特性和/或其突触强度,能够使给定CPG回路的输出适应动物不断变化的需求。然而,尽管有产生不同功能配置的能力,但CPG仍被认为是一组预先定义的相互连接的神经元,专门负责特定行为,在功能上可与负责其他任务的其他回路区分开来。然而,我们最近对甲壳纲动物口胃神经系统(STNS)的研究开始质疑CPG作为中枢神经系统内一个离散且可识别实体的这一概念。在这里,我们回顾证据表明,在神经调节指令下,单个神经元可以参与不同的振荡运动回路,从而参与不止一种节律性行为,甚至更深刻的是,现有的网络可以被拆解,以便动态地指定一个全新的回路来执行完全不同的行为。这种从头构建网络同样是通过神经调节诱导单个目标神经元的振荡和突触特性发生改变来实现的。因此,基于此,功能性CPG网络必须在比以前认为的更动态的背景下看待,因为它可能仅存在于由调节影响所决定的特定行为情境中。