Suppr超能文献

量化生物特异性:分子识别的统计力学

Quantifying biological specificity: the statistical mechanics of molecular recognition.

作者信息

Janin J

机构信息

Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France.

出版信息

Proteins. 1996 Aug;25(4):438-45. doi: 10.1002/prot.4.

Abstract

The Random Energy Model of statistical physics is applied to the problem of the specificity of recognition between two biological (macro)molecules forming a non-covalent complex. In this model, the native mode of association is separated by an energy gap from a large body of non-native modes. Whereas the native mode is unique, the non-native modes form an energy spectrum which is approximated by a gaussian distribution. Specificity can then be estimated by writing the partition function and calculating the ratio r of non-native to native modes at thermodynamic equilibrium. We examine three situations: (i) recognition in the absence of a competitor; (ii) recognition in the presence of a competing ligand; (iii) recognition in a heterogeneous mixture. We derive the dependence of the ratio r on temperature and on the concentration of competing ligands, and we estimate the effect of a local perturbation such as can result from a point mutation. Cases (i) and (iii) are modeled by docking experiments in the computer. In case (iii), which is representative of a wide variety of biological situations, we show that increasing the heterogeneity of a mixture affects the specificity of recognition, even when the concentration of competing species is kept constant.

摘要

统计物理学中的随机能量模型被应用于形成非共价复合物的两个生物(宏观)分子之间识别特异性的问题。在该模型中,天然结合模式与大量非天然模式之间存在能量间隙。天然模式是唯一的,而非天然模式形成一个能谱,该能谱可近似为高斯分布。然后可以通过写出配分函数并计算热力学平衡时非天然模式与天然模式的比率r来估计特异性。我们研究了三种情况:(i)在没有竞争者的情况下的识别;(ii)在存在竞争配体的情况下的识别;(iii)在异质混合物中的识别。我们推导了比率r对温度和竞争配体浓度的依赖性,并估计了诸如点突变可能导致的局部扰动的影响。情况(i)和(iii)通过计算机对接实验进行建模。在情况(iii)中,它代表了多种生物情况,我们表明即使竞争物种的浓度保持不变,增加混合物的异质性也会影响识别的特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验