VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
J Mol Biol. 2019 Apr 5;431(8):1650-1670. doi: 10.1016/j.jmb.2019.03.008. Epub 2019 Mar 13.
Intrinsically disordered proteins (IDPs) or regions (IDRs) perform diverse cellular functions, but are also prone to forming promiscuous and potentially deleterious interactions. We investigate the extent to which the properties of, and content in, IDRs have adapted to enable functional diversity while limiting interference from promiscuous interactions in the crowded cellular environment. Information on protein sequences, their predicted intrinsic disorder, and 3D structure contents is related to data on protein cellular concentrations, gene co-expression, and protein-protein interactions in the well-studied yeast Saccharomyces cerevisiae. Results reveal that both the protein IDR content and the frequency of "sticky" amino acids in IDRs (those more frequently involved in protein interfaces) decrease with increasing protein cellular concentration. This implies that the IDR content and the amino acid composition of IDRs experience negative selection as the protein concentration increases. In the S. cerevisiae protein-protein interaction network, the higher a protein's IDR content, the more frequently it interacts with IDR-containing partners, and the more functionally diverse the partners are. Employing a clustering analysis of Gene Ontology terms, we newly identify ~600 putative multifunctional proteins in S. cerevisiae. Strikingly, these proteins are enriched in IDRs and contribute significantly to all the observed trends. In particular, IDRs of multi-functional proteins feature more sticky amino acids than IDRs of their non-multifunctional counterparts, or the surfaces of structured yeast proteins. This property likely affords sufficient binding affinity for the functional interactions, commonly mediated by short IDR segments, thereby counterbalancing the loss in overall IDR conformational entropy upon binding.
无定形蛋白质(IDPs)或区域(IDRs)执行多种细胞功能,但也容易形成混杂且潜在有害的相互作用。我们研究了 IDRs 的特性和组成在多大程度上适应了功能多样性,同时限制了在拥挤的细胞环境中混杂相互作用的干扰。关于蛋白质序列、它们预测的固有无序性和 3D 结构含量的信息与酵母酿酒酵母中蛋白质细胞浓度、基因共表达和蛋白质-蛋白质相互作用的相关数据有关。结果表明,蛋白质 IDR 含量和 IDR 中“粘性”氨基酸(更频繁地参与蛋白质界面的氨基酸)的频率随着蛋白质细胞浓度的增加而降低。这意味着随着蛋白质浓度的增加,IDR 含量和 IDR 的氨基酸组成会经历负选择。在酿酒酵母蛋白质-蛋白质相互作用网络中,蛋白质的 IDR 含量越高,与包含 IDR 的伴侣相互作用的频率就越高,伴侣的功能多样性也就越高。通过对基因本体论术语的聚类分析,我们在酿酒酵母中发现了大约 600 个潜在的多功能蛋白质。引人注目的是,这些蛋白质富含 IDRs,并且对所有观察到的趋势都有重要贡献。特别是,多功能蛋白质的 IDR 比其非多功能对应物或结构酵母蛋白的 IDR 具有更多的粘性氨基酸,这一特性可能为功能相互作用提供了足够的结合亲和力,通常由短的 IDR 片段介导,从而平衡了结合时整体 IDR 构象熵的损失。