Duda T, Goraczniak R, Sharma R K
Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford 08084, USA.
Biochem J. 1996 Oct 1;319 ( Pt 1)(Pt 1):279-83. doi: 10.1042/bj3190279.
Depending upon the cofactors Mg2+ or Mn2+, ATP stimulates or inhibits the signal transduction activities of the natriuretic factor receptor guanylate cyclases, ANF-RGC and CNP-RGC: there is stimulation in the presence of Mg2+ and inhibition in the presence of Mn2+. A defined core ATP-regulated modulatory (ARM) sequence motif within the intracellular 'kinase-like' domain of the cyclases is critical for stimulation, but the mechanism of the inhibitory transduction process is not known. In addition, ATP inhibits the basal cyclase activity of a rod outer segment membrane guanylate cyclase (ROS-GC). The mechanism of this inhibitory transduction process is also not known. These issues have been addressed in the present investigation through a program of deletion mutagenesis/expression studies of the cyclases. The study shows that the ATP-mediated inhibitory transduction processes of the natriuretic factor receptor cyclases and of ROS-GC are identical. The ATP-regulated inhibitory domain of all these cyclases resides within the C-terminal segment of the cyclase. This domain is in a different location from the one representing the ATP-stimulatory ARM. The identification of the inhibitory domain in the C-terminal segment of the cyclase indicates that this segment is composed of two separate domains: one representing a catalytic cyclase domain and the other an ATP-regulated inhibitory (ARMi) domain. These findings establish a novel ATP-mediated inhibitory transduction mechanism of the membrane guanylate cyclases which is distinct from that of its counterpart, the stimulatory ATP-mediated hormonal signal transduction mechanism. Thus, they define a new paradigm of guanylate cyclase-linked signal transduction pathways.
取决于辅助因子Mg2+或Mn2+,ATP可刺激或抑制利钠因子受体鸟苷酸环化酶(ANF-RGC和CNP-RGC)的信号转导活性:在Mg2+存在时起刺激作用,在Mn2+存在时起抑制作用。环化酶细胞内“激酶样”结构域内一个明确的核心ATP调节性调节(ARM)序列基序对刺激作用至关重要,但抑制性转导过程的机制尚不清楚。此外,ATP抑制视杆外段膜鸟苷酸环化酶(ROS-GC)的基础环化酶活性。这种抑制性转导过程的机制也不清楚。在本研究中,通过对环化酶进行缺失诱变/表达研究的方案解决了这些问题。研究表明,利钠因子受体环化酶和ROS-GC的ATP介导的抑制性转导过程是相同的。所有这些环化酶的ATP调节性抑制结构域位于环化酶的C末端片段内。该结构域与代表ATP刺激的ARM的结构域位置不同。在环化酶C末端片段中鉴定出抑制结构域表明该片段由两个独立的结构域组成:一个代表催化性环化酶结构域,另一个代表ATP调节性抑制(ARMi)结构域。这些发现确立了膜鸟苷酸环化酶一种新的ATP介导的抑制性转导机制,该机制与其对应的刺激性ATP介导的激素信号转导机制不同。因此,它们定义了鸟苷酸环化酶相关信号转导途径的一个新范例。