Zaidi T N, McIntire L V, Farrell D H, Thiagarajan P
Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, USA.
Blood. 1996 Oct 15;88(8):2967-72.
After platelet activation, fibrinogen mediates platelet-platelet interactions leading to platelet aggregation. In addition, fibrinogen can also function as a cell adhesion molecule, providing a substratum for adhesion of platelets and endothelial cells. In this report, we studied the adhesion of platelets to surface-immobilized fibrinogen under flow in different shear rates. Heparinized whole blood containing mepacrine-labeled platelets was perfused for two minutes at various wall shear rates from 250 to 2,000 s-1 in a parallel plate flow chamber. The number of adherent fluorescent platelets was quantitated every 15 seconds with an epifluorescent videomicroscope and digital image processing system. When compared with platelet adhesion and aggregation seen on glass surfaces coated with type I bovine collagen, a significant increase in platelet adhesion was observed on immobilized fibrinogen up to wall shear rates of 800 s-1. The adherent platelets formed a single layer on fibrinogen-coated surfaces. Under identical conditions, no significant adhesion was observed on fibronectin- or vitronectin-coated surfaces. Although platelet adhesion to collagen was substantially inhibited by the platelet inhibitors prostaglandin E1 and theophylline, these inhibitors had no effect on platelet adhesion to fibrinogen. Platelets adhered to recombinant homodimeric wild-type (gamma 400-411) fibrinogen, but not to the recombinant homodimeric gamma' variant of fibrinogen. Platelet adhesion to recombinant fibrinogen with RGD to RGE mutations at positions alpha 95-97 and alpha 572-574 was similar to that with plasma-derived fibrinogen. These results show that platelets adhere to fibrinogen-coated surfaces under moderate wall shear rates, that the interaction is mediated by the fibrinogen 400-411 sequence at the carboxy-terminus of the gamma chain, and that the interaction is independent of platelet activation and the RGD sequences in the alpha chain.
血小板激活后,纤维蛋白原介导血小板与血小板之间的相互作用,导致血小板聚集。此外,纤维蛋白原还可作为细胞粘附分子,为血小板和内皮细胞的粘附提供基质。在本报告中,我们研究了在不同剪切速率下流动状态下血小板与表面固定化纤维蛋白原的粘附情况。在平行板流动腔中,以250至2000 s-1的不同壁面剪切速率,将含有美帕林标记血小板的肝素化全血灌注两分钟。每隔15秒用落射荧光显微镜和数字图像处理系统对粘附的荧光血小板数量进行定量。与在涂有I型牛胶原蛋白的玻璃表面上观察到的血小板粘附和聚集相比,在固定化纤维蛋白原上,直至壁面剪切速率达到800 s-1时,血小板粘附显著增加。粘附的血小板在纤维蛋白原包被的表面形成单层。在相同条件下,在纤连蛋白或玻连蛋白包被的表面未观察到显著的粘附。尽管血小板对胶原蛋白的粘附被血小板抑制剂前列腺素E1和茶碱显著抑制,但这些抑制剂对血小板与纤维蛋白原的粘附没有影响。血小板可粘附于重组同型二聚体野生型(γ400 - 411)纤维蛋白原,但不粘附于纤维蛋白原的重组同型二聚体γ'变体。在α链第95 - 97位和α572 - ⑤74位具有RGD至RGE突变的重组纤维蛋白原上的血小板粘附情况与血浆来源的纤维蛋白原相似。这些结果表明,血小板在中等壁面剪切速率下粘附于纤维蛋白原包被的表面,这种相互作用由γ链羧基末端的纤维蛋白原400 - 411序列介导,且这种相互作用独立于血小板激活和α链中的RGD序列。