Suppr超能文献

MADS-box多基因家族的分类和系统发育表明,MADS-box基因亚家族在真核生物形态进化中具有明确的作用。

Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes.

作者信息

Theissen G, Kim J T, Saedler H

机构信息

Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.

出版信息

J Mol Evol. 1996 Nov;43(5):484-516. doi: 10.1007/BF02337521.

Abstract

The MADS-box encodes a novel type of DNA-binding domain found so far in a diverse group of transcription factors from yeast, animals, and seed plants. Here, our first aim was to evaluate the primary structure of the MADS-box. Compilation of the 107 currently available MADS-domain sequences resulted in a signature which can strictly discriminate between genes possessing or lacking a MADS-domain and allowed a classification of MADS-domain proteins into several distinct subfamilies. A comprehensive phylogenetic analysis of known eukaryotic MADS-box genes, which is the first comprising animal as well as fungal and plant homologs, showed that the vast majority of subfamily members appear on distinct subtrees of phylogenetic trees, suggesting that subfamilies represent monophyletic gene clades and providing the proposed classification scheme with a sound evolutionary basis. A reconstruction of the history of the MADS-box gene subfamilies based on the taxonomic distribution of contemporary subfamily members revealed that each subfamily comprises highly conserved putative orthologs and recent paralogs. Some subfamilies must be very old (1,000 MY or more), while others are more recent. In general, subfamily members tend to share highly similar sequences, expression patterns, and related functions. The defined species distribution, specific function, and strong evolutionary conservation of the members of most subfamilies suggest that the establishment of different subfamilies was followed by rapid fixation and was thus highly advantageous during eukaryotic evolution. These gene subfamilies may have been essential prerequisites for the establishment of several complex eukaryotic body structures, such as muscles in animals and certain reproductive structures in higher plants, and of some signal transduction pathways. Phylogenetic trees indicate that after establishment of different subfamilies, additional gene duplications led to a further increase in the number of MADS-box genes. However, several molecular mechanisms of MADS-box gene diversification were used to a quite different extent during animal and plant evolution. Known plant MADS-domain sequences diverged much faster than those of animals, and gene duplication and sequence diversification were extensively used for the creation of new genes during plant evolution, resulting in a relatively large number of interacting genes. In contrast, the available data on animal genes suggest that increase in gene number was only moderate in the lineage leading to mammals, but in the case of MEF2-like gene products, heterodimerization between different splice variants may have increased the combinatorial possibilities of interactions considerably. These observations demonstrate that in metazoan and plant evolution, increased combinatorial possibilities of MADS-box gene product interactions correlated with the evolution of increasingly complex body plans.

摘要

MADS盒编码一种新型的DNA结合结构域,迄今为止在酵母、动物和种子植物等多种转录因子中均有发现。在此,我们的首要目标是评估MADS盒的一级结构。对目前可得的107个MADS结构域序列进行汇编,得到了一个特征序列,该序列能够严格区分拥有或缺乏MADS结构域的基因,并可将MADS结构域蛋白分为几个不同的亚家族。对已知真核生物MADS盒基因进行的全面系统发育分析(这是首次涵盖动物以及真菌和植物同源物的分析)表明,绝大多数亚家族成员出现在系统发育树的不同子树上,这表明亚家族代表单系基因分支,并为所提出的分类方案提供了可靠的进化基础。基于当代亚家族成员的分类分布对MADS盒基因亚家族的历史进行重建,结果显示每个亚家族都包含高度保守的假定直系同源物和近期的旁系同源物。一些亚家族必定非常古老(10亿年或更久),而其他亚家族则较为年轻。一般来说,亚家族成员倾向于共享高度相似的序列、表达模式和相关功能。大多数亚家族成员明确的物种分布、特定功能以及强烈的进化保守性表明,不同亚家族的形成之后是快速固定,因此在真核生物进化过程中具有高度优势。这些基因亚家族可能是建立几种复杂真核生物身体结构(如动物的肌肉和高等植物的某些生殖结构)以及一些信号转导途径的必要前提。系统发育树表明,在不同亚家族形成之后,额外的基因复制导致MADS盒基因数量进一步增加。然而,在动物和植物进化过程中,MADS盒基因多样化的几种分子机制的使用程度差异很大。已知植物MADS结构域序列的分歧比动物的要快得多,并且在植物进化过程中,基因复制和序列多样化被广泛用于创造新基因,从而产生了相对大量的相互作用基因。相比之下,关于动物基因的现有数据表明,在导致哺乳动物的谱系中,基因数量的增加较为适度,但就MEF2样基因产物而言,不同剪接变体之间的异源二聚化可能大大增加了相互作用的组合可能性。这些观察结果表明,在后生动物和植物进化过程中,MADS盒基因产物相互作用的组合可能性增加与日益复杂的身体结构的进化相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验