Suppr超能文献

Photobiology of microorganisms: how photosensors catch a photon to initialize signalling.

作者信息

Hellingwerf K J, Hoff W D, Crielaard W

机构信息

Department of Microbiology, E.C. Slater Instituut, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.

出版信息

Mol Microbiol. 1996 Aug;21(4):683-93. doi: 10.1046/j.1365-2958.1996.411402.x.

Abstract

Photobiological processes are relevant for microorganisms for energy generation, protection against excess and/or damaging radiation, and for signalling. In this review we give an overview of the knowledge on the functioning of photosensors in microorganisms, with special emphasis on the conformational changes that lead to signal generation and transduction. Light is absorbed by specific chromophores, which are tuned, by their proteinaceous environment, to function optimally. These chromophores belong to three classes: tetrapyrroles, polyenes and aromatics. The chemical structure of photosensing pigment/protein complexes has been resolved for many of the photobiological processes that have a characteristic sensitivity in the visible and infrared part of the spectrum of (solar) radiation. However, knowledge about the structure of photoreceptors responsible for several physiologically well-characterized photoresponses to UV- and blue light is still lacking. For a limited number of phototransduction processes, the details of light-induced signal transfer are beginning to be understood in atomic detail. This applies particularly to two photosensors involved in phototactic responses in bacteria: sensory rhodopsin I (SR-I) from Halobacterium salinarium and photoactive yellow protein (PYP) from Ectothiorhodospira halophila. The SR-1 system is of special interest because the transducer accepting the signal from SR-1 was recently identified as Htr-1, a homologue of the methyl-accepting chemotaxis proteins which have been characterized in Escherichia coli. PYP, on the other hand, may be the first photosensor to actually reveal all relevant details of the kinetics, thermodynamics, and molecular motion of light-induced signal generation, through an understanding of how the photo-isomerization of the chromophore forces the sensor protein into the signalling state. Here we compare these photosensors and discuss common themes in the initiation of photosensory signal transduction in microorganisms in terms of the molecular properties of photosensors and their signalling state.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验