Spencer H G, Barnett J A
Department of Zoology, University of Otago, Dunedin, New Zealand.
Genetics. 1996 Sep;144(1):361-7. doi: 10.1093/genetics/144.1.361.
We propose a pair of population genetic models for a modifier-of-imprinting locus for which different genotypes imprint different proportions of an imprintable target locus in their gametes. The two models examine the situations in which imprinting is advantageous, and we discuss three cases for which the modifier is respectively partially dominant, dominant, or recessive. The models predict the stable equilibrium frequencies of the mutant modifier and functionally diploid individuals in a large population in terms of up to four parameters: the mutation rate at the modifier locus, nu; the selection coefficient against the disadvantageous phenotype, sigma; the proportion of unimprinted eggs produced by homozygotes for the mutant modifier, theta, and, in the partially dominant models, the dominance parameter, kappa. The equilibrium frequency of the mutant phenotypes is shown to be approximately twice that of standard Mendelian models: 2 nu/sigma or 4nu/sigma when the modifier is recessive or dominant, respectively. Mathematical equivalences between these and nonimprinting models are noted.
我们针对一个印记修饰位点提出了一对群体遗传模型,对于该位点,不同基因型在其配子中对一个可印记目标位点进行不同比例的印记。这两个模型研究了印记具有优势的情况,并且我们讨论了三种情况,即修饰基因分别为部分显性、显性或隐性。这些模型根据多达四个参数预测了大群体中突变修饰基因和功能二倍体个体的稳定平衡频率:修饰基因座的突变率,ν;针对不利表型的选择系数,σ;突变修饰基因纯合子产生的未印记卵子的比例,θ,以及在部分显性模型中的显性参数,κ。突变表型的平衡频率显示约为标准孟德尔模型的两倍:当修饰基因为隐性或显性时,分别为2ν/σ或4ν/σ。还指出了这些模型与非印记模型之间的数学等价关系。