Suppr超能文献

概念层次记忆模型:一种用于概念知识表示、学习和常识推理的神经架构。

Concept hierarchy memory model: a neural architecture for conceptual knowledge representation, learning, and commonsense reasoning.

作者信息

Tan A H, Soon H S

机构信息

RWCP Neuro ISS Laboratory, Kent Ridge, Singapore.

出版信息

Int J Neural Syst. 1996 Jul;7(3):305-19. doi: 10.1142/s0129065796000270.

Abstract

This article introduces a neural network based cognitive architecture termed Concept Hierarchy Memory Model (CHMM) for conceptual knowledge representation and commonsense reasoning. CHMM is composed of two subnetworks: a Concept Formation Network (CFN), that acquires concepts based on their sensory representations; and a Concept Hierarchy Network (CHN), that encodes hierarchical relationships between concepts. Based on Adaptive Resonance Associative Map (ARAM), a supervised Adaptive Resonance Theory (ART) model, CHMM provides a systematic treatment for concept formation and organization of a concept hierarchy. Specifically, a concept can be learned by sampling activities across multiple sensory fields. By chunking relations between concepts as cognitive codes, a concept hierarchy can be learned/modified through experience. Also, fuzzy relations between concepts can now be represented in terms of the weights on the links connecting them. Using a unified inferencing mechanism based on code firing, CHMM performs an important class of commonsense reasoning, including concept recognition and property inheritance.

摘要

本文介绍了一种基于神经网络的认知架构,称为概念层次记忆模型(CHMM),用于概念知识表示和常识推理。CHMM由两个子网组成:一个概念形成网络(CFN),它基于概念的感官表征来获取概念;以及一个概念层次网络(CHN),它对概念之间的层次关系进行编码。基于自适应共振联想映射(ARAM),一种有监督的自适应共振理论(ART)模型,CHMM为概念形成和概念层次的组织提供了系统的处理方法。具体而言,一个概念可以通过对多个感官领域的采样活动来学习。通过将概念之间的关系组块为认知代码,一个概念层次可以通过经验来学习/修改。此外,概念之间的模糊关系现在可以用连接它们的链接上的权重来表示。使用基于代码激发的统一推理机制,CHMM执行一类重要的常识推理,包括概念识别和属性继承。

相似文献

2
Fuzzy associative conjuncted maps network.
IEEE Trans Neural Netw. 2009 Aug;20(8):1302-19. doi: 10.1109/TNN.2009.2023213. Epub 2009 Jul 24.
3
Online adaptive decision trees.
Neural Comput. 2004 Sep;16(9):1959-81. doi: 10.1162/0899766041336396.
4
Representation of concept lattices by bidirectional associative memories.
Neural Comput. 2000 Oct;12(10):2279-90. doi: 10.1162/089976600300014935.
5
Hierarchically clustered adaptive quantization CMAC and its learning convergence.
IEEE Trans Neural Netw. 2007 Nov;18(6):1658-82. doi: 10.1109/TNN.2007.900810.
6
Deep associative neural network for associative memory based on unsupervised representation learning.
Neural Netw. 2019 May;113:41-53. doi: 10.1016/j.neunet.2019.01.004. Epub 2019 Feb 1.
7
A supervised learning network based on adaptive resonance theory.
Int J Neural Syst. 1997 Apr;8(2):239-46. doi: 10.1142/s0129065797000240.
8
Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
Neural Netw. 2013 Dec;48:109-24. doi: 10.1016/j.neunet.2013.07.012. Epub 2013 Aug 14.
9
FCMAC-Yager: a novel Yager-inference-scheme-based fuzzy CMAC.
IEEE Trans Neural Netw. 2006 Nov;17(6):1394-410. doi: 10.1109/TNN.2006.880362.
10
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
J Neurosci. 2016 Sep 21;36(38):9763-9. doi: 10.1523/JNEUROSCI.4095-15.2016.

引用本文的文献

1
Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity.
Front Comput Neurosci. 2016 Dec 20;10:136. doi: 10.3389/fncom.2016.00136. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验