Haugeto O, Ullensvang K, Levy L M, Chaudhry F A, Honoré T, Nielsen M, Lehre K P, Danbolt N C
Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1105 Blindern, N-0317 Oslo, Norway.
J Biol Chem. 1996 Nov 1;271(44):27715-22. doi: 10.1074/jbc.271.44.27715.
Removal of excitatory amino acids from the extracellular fluid is essential for synaptic transmission and for avoiding excitotoxicity. The removal is accomplished by glutamate transporters located in the plasma membranes of both neurons and astroglia. The uptake system consists of several different transporter proteins that are carefully regulated, indicating more refined functions than simple transmitter inactivation. Here we show by chemical cross-linking, followed by electrophoresis and immunoblotting, that three rat brain glutamate transporter proteins (GLAST, GLT and EAAC) form homomultimers. The multimers exist not only in intact brain membranes but also after solubilization and after reconstitution in liposomes. Increasing the cross-linker concentration increased the immunoreactivity of the bands corresponding to trimers at the expense of the dimer and monomer bands. However, the immunoreactivities of the dimer bands did not disappear, indicating a mixture of dimers and trimers. GLT and GLAST do not complex with each other, but as demonstrated by double labeling post-embedding electron microscopic immunocytochemistry, they co-exist side by side in the same astrocytic cell membranes. The oligomers are held together noncovalently in vivo. In vitro, oxidation induces formation of covalent bonds (presumably -S-S-) between the subunits of the oligomers leading to the appearance of oligomer bands on SDS-polyacrylamide gel electrophoresis. Immunoprecipitation experiments suggest that GLT is the quantitatively dominant glutamate transporter in the brain. Radiation inactivation analysis gives a molecular target size of the functional complex corresponding to oligomeric structure. We postulate that the glutamate transporters operate as homomultimeric complexes.
从细胞外液中清除兴奋性氨基酸对于突触传递和避免兴奋性毒性至关重要。这种清除是通过位于神经元和星形胶质细胞质膜上的谷氨酸转运体来完成的。摄取系统由几种不同的转运蛋白组成,这些蛋白受到精细调控,这表明其功能比简单的递质失活更为精细。在这里,我们通过化学交联,随后进行电泳和免疫印迹,证明三种大鼠脑谷氨酸转运蛋白(GLAST、GLT和EAAC)形成同多聚体。这些多聚体不仅存在于完整的脑细胞膜中,而且在溶解后以及在脂质体中重构后也存在。增加交联剂浓度会增加对应三聚体条带的免疫反应性,同时以二聚体和单体条带为代价。然而,二聚体条带的免疫反应性并未消失,表明存在二聚体和三聚体的混合物。GLT和GLAST不会相互结合,但通过包埋后双标记电子显微镜免疫细胞化学证明,它们在同一星形胶质细胞膜中并排共存。这些寡聚体在体内通过非共价键结合在一起。在体外,氧化会诱导寡聚体亚基之间形成共价键(推测为-S-S-),导致在SDS-聚丙烯酰胺凝胶电泳上出现寡聚体条带。免疫沉淀实验表明,GLT是脑中数量上占主导的谷氨酸转运体。辐射失活分析给出了与寡聚体结构相对应的功能复合物的分子靶标大小。我们推测谷氨酸转运体以同多聚体复合物的形式发挥作用。