Suppr超能文献

Activation of the alpha1b-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint.

作者信息

Porter J E, Hwa J, Perez D M

机构信息

Department of Molecular Cardiology, Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

出版信息

J Biol Chem. 1996 Nov 8;271(45):28318-23. doi: 10.1074/jbc.271.45.28318.

Abstract

Rhodopsin receptor activation involves the disruption of a salt bridge constraint between glutamic acid 113 on transmembrane 3 and a lysine 296 in transmembrane 7, which forms a Schiff's base with retinal. Light-induced isomerization of cis-retinal to the all trans form breaks this rhodopsin salt bridge leading to receptor activation. The analogous residues in alpha1b-adrenergic receptors, aspartic acid 125 and lysine 331, also have the potential of forming a constraining salt bridge holding the receptor to an inactive protein configuration. This alpha1b-adrenergic receptor salt bridge constraint is then released upon binding by the receptor agonist. To test this hypothesis, site-directed mutagenesis was used to eliminate the positive charge at position 331 by substitution of an alanine. The expressed alpha1b-adrenergic receptor mutant demonstrated a 6-fold increased epinephrine binding affinity with no alterations of affinity values for selective adrenergic receptor antagonists. Furthermore, an increased epinephrine potency for total soluble inositol phosphate production along with an elevated basal inositol triphosphate level was observed in COS-1 cells transfected with mutant versus wild-type alpha1b-adrenergic receptors. Similar results were obtained for a lysine to a glutamic acid alpha1b-adrenergic receptor mutation. In addition, increased basal inositol triphosphate levels were also observed for two aspartic acid 125 alpha1b-adrenergic receptor mutations, consistent with this residue's role as the counterion of the salt bridge. Taken together, these alpha1b-adrenergic receptor mutations suggest a molecular mechanism by which the positively charged lysine 331 stabilizes the negatively charged aspartic acid 125 via a salt bridge constraint until bound by the receptor agonist.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验