Suppr超能文献

利用磁共振成像测定活体心脏的心肌材料特性。

Myocardial material property determination in the in vivo heart using magnetic resonance imaging.

作者信息

Moulton M J, Creswell L L, Downing S W, Actis R L, Szabó B A, Pasque M K

机构信息

Department of Surgery, Washington University, St. Louis, MO 63110, USA.

出版信息

Int J Card Imaging. 1996 Sep;12(3):153-67. doi: 10.1007/BF01806218.

Abstract

OBJECTIVES

To determine nonlinear material properties of passive, diastolic myocardium using magnetic resonance imaging (MRI) tissue-tagging, finite element analysis (FEA) and nonlinear optimization.

BACKGROUND

Alterations in the diastolic material properties of myocardium may pre-date the onset of or exist exclusive of systolic ventricular dysfunction in disease states such as hypertrophy and heart failure. Accordingly, significant effort has been expended recently to characterize the material properties of myocardium in diastole. The present study defines a new technique for determining material properties of passive myocardium using finite element (FE) models of the heart, MRI tissue-tagging and nonlinear optimization. This material parameter estimation algorithm is employed to estimate nonlinear material parameter sin the in vivo canine heart and provides the necessary framework to study the full complexities of myocardial material behavior in health and disease.

METHODS AND RESULTS

Material parameters for a proposed exponential strain energy function were determined by minimizing the least squares difference between FE model-predicted and MRI-measured diastolic strains. Six mongrel dogs underwent MRI imaging with radiofrequency (RF) tissue-tagging. Two-dimensional diastolic strains were measured from the deformations of the MRI tag lines. Finite element models were constructed from early diastolic images and were loaded with the mean early to late left ventricular and right ventricular diastolic change in pressure measured at the time of imaging. A nonlinear optimization algorithm was employed to solve the least squares objective function for hte material parameters. Average material parameters for the six dogs were E = 28,722 +/- 15984 dynes/cm2 and c = 0.00182 +/- 0.00232 cm2/dyne.

CONCLUSION

This parameter estimation algorithm provides the necessary framework for estimating the nonlinear, anisotropic and non-homogeneous material properties of passive myocardium in health and disease in the in vivo beating heart.

摘要

目的

利用磁共振成像(MRI)组织标记、有限元分析(FEA)和非线性优化来确定被动舒张期心肌的非线性材料特性。

背景

在诸如肥厚和心力衰竭等疾病状态下,心肌舒张期材料特性的改变可能早于收缩期心室功能障碍的发生或独立存在。因此,最近人们付出了巨大努力来表征舒张期心肌的材料特性。本研究定义了一种新技术,使用心脏的有限元(FE)模型、MRI组织标记和非线性优化来确定被动心肌的材料特性。这种材料参数估计算法用于估计体内犬心的非线性材料参数,并提供了研究健康和疾病状态下心肌材料行为全部复杂性的必要框架。

方法与结果

通过最小化有限元模型预测的舒张期应变与MRI测量的舒张期应变之间的最小二乘差异,确定了所提出的指数应变能函数的材料参数。对6只杂种犬进行了带有射频(RF)组织标记的MRI成像。从MRI标记线的变形测量二维舒张期应变。根据舒张早期图像构建有限元模型,并加载成像时测量的左心室和右心室舒张早期到晚期的平均压力变化。采用非线性优化算法求解材料参数的最小二乘目标函数。6只犬的平均材料参数为E = 28,722 +/- 15984达因/平方厘米,c = 0.00182 +/- 0.00232平方厘米/达因。

结论

该参数估计算法为估计体内跳动心脏中健康和疾病状态下被动心肌的非线性、各向异性和非均匀材料特性提供了必要框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验