Suppr超能文献

Spontaneous p53 mutation in murine mesothelial cells: increased sensitivity to DNA damage induced by asbestos and ionizing radiation.

作者信息

Cistulli C A, Sorger T, Marsella J M, Vaslet C A, Kane A B

机构信息

Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA.

出版信息

Toxicol Appl Pharmacol. 1996 Nov;141(1):264-71. doi: 10.1006/taap.1996.0283.

Abstract

The p53 gene regulates the G1 cell cycle checkpoint in response to DNA damage. A primary murine mesothelial cell line (D9) spontaneously acquired a point mutation at codon 135 in exon 5 of the p53 gene, resulting in substitution of alanine for proline; early passage D9 cells expressed wild-type p53. The growth rate of late passage D9 cells that acquired the p53 mutation was increased compared to that of early passage cells; however, this mutation was not sufficient to confer tumorigenicity to this cell line. Mammalian cells that express wild-type p53 show a transient arrest in G1 after exposure to ionizing radiation. Early passage D9 cells showed a G1 arrest following ionizing radiation, while late passage D9 cells arrested in G2 or mitosis. The clastogenic effects of ionizing radiation can be demonstrated by the cytokinesis-arrested micronucleus assay. Following treatment with cytochalasin B to arrest cytokinesis, ionizing radiation induced micronuclei in 50% of late passage D9 cells compared to 15% of early passage cells. After exposure to 15 micrograms/cm2 of crocidolite asbestos fibers, 18% of late passage cells had micronuclei compared to 4% of early passage cells. It is hypothesized that loss of the G1 cell cycle checkpoint contributes to genetic instability in murine mesothelial cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验