Trus B L, Booy F P, Newcomb W W, Brown J C, Homa F L, Thomsen D R, Steven A C
Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
J Mol Biol. 1996 Nov 1;263(3):447-62. doi: 10.1016/s0022-2836(96)80018-0.
The proteins coded by the five major capsid genes of herpes simplex virus 1, VP5 (gene UL19), VP19c (UL38), VP23 (UL18), pre-VP22a (UL26.5), and pre-VP21 (UL26), assemble into fragile roundish "procapsids", which mature into robust polyhedral capsids in a transition similar to that undergone by bacteriophage proheads. Here we describe the HSV-1 procapsid structure to a resolution of approximately 2.7 nm from three-dimensional reconstructions of cryo-electron micrographs. Comparison with the mature capsid provides insight into the large-scale conformational changes that take place upon maturation. In the procapsid, the elongated protomers (VP5 subunits) make little contact with each other except around the bases of the hexons and pentons, whereas they are tightly clustered into capsomers in the mature state; the axial channels, which are constricted or blocked in the mature capsid, are fully open; and unlike the well observed 6-fold symmetry of mature hexons, procapsid hexons are distorted into oval and triangular shapes. These deformations reveal a VP5 domain in the inner part of the protrusion wall which participates in inter-protomer bonding in the procapsid and is close to the site where the channel closes upon maturation. Remarkably, there are no direct contacts between neighboring capsomers; instead, interactions between them are mediated by the "triplexes" at the sites of local 3-fold symmetry. This observation discloses the mechanism whereby the triplex proteins, VP19c and VP23, play their essential roles in capsid morphogenesis. In the mature capsid, density extends continuously between neighboring capsomers in the inner "floor" layer. In contrast, there are large gaps in the corresponding region of the procapsid, implying that formation of the floor involves extensive remodeling. Inside the procapsid shell is the hollow spherical scaffold, whose radial density profile indicates that the major scaffold protein, pre-VP22a, is a long molecule (> 24 nm) composed of three domains. Since no evidence of icosahedral symmetry is detected in the scaffold, we infer that (unless higher resolution is required) the scaffold may not be an icosahedral shell but may instead be a protein micelle with a preferred radius of curvature.
单纯疱疹病毒1型的五个主要衣壳基因(VP5,基因UL19;VP19c,UL38;VP23,UL18;前体VP22a,UL26.5;前体VP21,UL26)编码的蛋白质组装成脆弱的圆形“原衣壳”,这些原衣壳在类似于噬菌体前头部经历的转变过程中成熟为坚固的多面体衣壳。在这里,我们通过对冷冻电子显微镜图像的三维重建,将单纯疱疹病毒1型原衣壳结构解析到约2.7纳米的分辨率。与成熟衣壳的比较有助于深入了解成熟过程中发生的大规模构象变化。在原衣壳中,细长的原体(VP5亚基)除了在六邻体和五邻体的基部周围几乎不相互接触,而在成熟状态下它们紧密聚集形成壳粒;在成熟衣壳中收缩或堵塞的轴向通道是完全开放的;与成熟六邻体中观察到的明显的六重对称性不同,原衣壳六邻体扭曲成椭圆形和三角形。这些变形揭示了突出壁内部的一个VP5结构域,它参与原衣壳中原体间的结合,并且靠近成熟时通道关闭的位置。值得注意的是,相邻壳粒之间没有直接接触;相反,它们之间的相互作用是由局部三重对称性位点处的“三聚体”介导的。这一观察结果揭示了三聚体蛋白VP19c和VP23在衣壳形态发生中发挥重要作用的机制。在成熟衣壳中,密度在内部“底部”层的相邻壳粒之间连续延伸。相比之下,原衣壳的相应区域存在大间隙,表示底部的形成涉及广泛的重塑。在原衣壳壳内部是中空的球形支架,其径向密度分布表明主要支架蛋白前体VP22a是一个由三个结构域组成的长分子(>24纳米)。由于在支架中未检测到二十面体对称性的证据,我们推断(除非需要更高分辨率)支架可能不是二十面体壳,而是可能是具有优选曲率半径的蛋白质胶束。