Mancini D, Katz S, Donchez L, Aaronson K
Division of Circulatory Physiology, Columbia Presbyterian Medical Center, New York, NY 10032, USA.
Circulation. 1996 Nov 15;94(10):2492-6. doi: 10.1161/01.cir.94.10.2492.
Measurement of peak Vo2 has become an accepted method to select patients for cardiac transplantation. Some investigators have suggested that the addition of exercise hemodynamic measurements can further enhance risk stratification because these measurements may identify patients with a noncardiac limitation to exercise.
Accordingly, we performed maximal bicycle exercise with respiratory gas analysis and hemodynamic measurements in 65 patients (47 men, 18 women) 53 +/- 10 years old (mean +/- SD) who underwent a transplant evaluation at Columbia Presbyterian Medical Center. Skeletal muscle oxygenation of the vastus lateralis during exercise was assessed with near-infrared spectroscopy. Exercise hemodynamic, ventilatory, and muscle oxygenation measurements were obtained in all patients. For each subject, a linear correlation was derived between Vo2 and pulmonary artery saturation (PA Sao2). The slope of this relationship and a theoretical Vo2max at a PA Sao2 of 0% (Vo2 intercept) was derived. Baseline measurements were left ventricular ejection fraction, 22 +/- 9%; pulmonary capillary wedge pressure (PCWP), 16 +/- 10 mm Hg; cardiac index (CI), 2.1 +/- 0.5 L. min-1. m-2; and PA Sao2, 53 +/- 8%. The cardiac output response to exercise was categorized as normal or abnormal by comparison to the linear equation of peak Vo2 versus peak cardiac output as described by Higginbotham. Exercise measurements were peak Vo2, 12.1 +/- 3.0 mL.kg-1.min-1; Vo2 intercept, 19.1 +/- 5.5 mL. kg-1.min-1; PCWP, 31 +/- 11 mm Hg; CI, 3.8 +/- 1.3 L.min-1.m-2; and PA Sao2, 27 +/- 9%. Only 6% of patients exhibited a normal cardiac output response to exercise. Multivariate analysis was performed with peak Vo2, Vo2 intercept, skeletal muscle oxygenation at end exercise, and peak exercise hemodynamic variables. Only left ventricular stroke work and left ventricular stroke work index were shown to be predictive of survival.
Addition of exercise hemodynamic measurements to noninvasive metabolic stress testing minimally improves risk prognostication in patients with severe heart failure.
测量峰值摄氧量已成为选择心脏移植患者的一种公认方法。一些研究人员认为,增加运动血流动力学测量可以进一步改善风险分层,因为这些测量可能识别出存在运动非心脏性限制的患者。
因此,我们对65例(47例男性,18例女性)年龄为53±10岁(均值±标准差)、在哥伦比亚长老会医学中心接受移植评估的患者进行了最大程度的自行车运动,并进行呼吸气体分析和血流动力学测量。运动期间通过近红外光谱法评估股外侧肌的骨骼肌氧合情况。对所有患者进行了运动血流动力学、通气和肌肉氧合测量。对于每个受试者,得出摄氧量与肺动脉饱和度(PA Sao2)之间的线性相关性。得出这种关系的斜率以及PA Sao2为0%时的理论最大摄氧量(摄氧量截距)。基线测量值为左心室射血分数22±9%;肺毛细血管楔压(PCWP)16±10 mmHg;心脏指数(CI)2.1±0.5 L·min-1·m-2;以及PA Sao2 53±8%。与希金博特姆所描述的峰值摄氧量与峰值心输出量的线性方程相比,将运动时的心输出量反应分类为正常或异常。运动测量值为峰值摄氧量12.1±3.0 mL·kg-1·min-1;摄氧量截距19.1±5.5 mL·kg-1·min-1;PCWP 31±11 mmHg;CI 3.8±1.3 L·min-1·m-2;以及PA Sao2 27±9%。只有6%的患者运动时的心输出量反应正常。对峰值摄氧量、摄氧量截距、运动末期的骨骼肌氧合情况以及峰值运动血流动力学变量进行多变量分析。只有左心室每搏功和左心室每搏功指数被证明可预测生存率。
在无创代谢应激测试中增加运动血流动力学测量对严重心力衰竭患者的风险预后改善甚微。