Liou H C, Yang R S, Fu W M
Department of Pharmacology, College of Medicine, National Taiwan University, Taipei.
Neuroscience. 1996 Nov;75(1):325-31. doi: 10.1016/0306-4522(96)00280-1.
Extracellular application of glutamate (100 microM) increased the spontaneous secretion of acetylcholine, as well as the amplitude and decay time of miniature endplate potentials at developing neuromuscular synapses in Xenopus tadpoles. Kainate, quisqualate and N-methyl-D-aspartate (100 microM each) increased miniature endplate potential frequency by 26-, 13- and four-fold, respectively. The rank order of efficacy at 100 microM was kainate > quisqualate > N-methyl-D-aspartate > glutamate. The effect of kainate on miniature endplate potential frequency was inhibited by 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (20 microM), but not by (+/-)-2-amino-5-phosphonovalerate (20 microM). Treatment with the voltage-dependent Ca2+ channel blockers verapamil (10 microM), Cd2+ (100 microM) or omega-conotoxin (1 microM) inhibited the potentiating action of kainate on miniature endplate potential frequency. On the other hand, 1S,3R-1-aminocyclopentane-1,3-dicarboxylate (300 microM), a glutamate metabotropic receptor agonist, inhibited the spontaneous acetylcholine release, which was antagonized by the application of 2-amino-3-phosphonopropionate (500 microM). The potentiating effect of glutamate receptor agonists on the miniature endplate potential frequency declined or disappeared in older Xenopus tadpoles. Quisqualate (100 microM) and N-methyl-D-aspartate (100 microM) but not kainate (30 microM) increased the amplitude and decay time of miniature endplate potential, whereas 1S, 3R-1-aminocyclopentane-1, 3-dicarboxylate (300 microM) only increased the decay time of miniature endplate potentials. These results suggest that there are kainate/quisqualate and N-methyl-D-aspartate receptors existing in the motor nerve terminals of younger Xenopus tadpoles and the activation of these receptors potentiates spontaneous acetylcholine release through increasing Ca2+ influx. Our data suggest that the presynaptic glutamate receptors on cholinergic terminals may be involved in feedback regulation of acetylcholine secretion at earlier embryonic stages.
在非洲爪蟾蝌蚪发育中的神经肌肉突触处,细胞外施加谷氨酸(100微摩尔)可增加乙酰胆碱的自发分泌,以及微小终板电位的幅度和衰减时间。海人藻酸、quisqualate和N-甲基-D-天冬氨酸(各100微摩尔)分别使微小终板电位频率增加26倍、13倍和4倍。100微摩尔时的效力顺序为海人藻酸>quisqualate>N-甲基-D-天冬氨酸>谷氨酸。6-氰基-2,3-二羟基-7-硝基喹喔啉(20微摩尔)可抑制海人藻酸对微小终板电位频率的作用,但(±)-2-氨基-5-磷酸戊酸(20微摩尔)则无此作用。用电压依赖性钙通道阻滞剂维拉帕米(10微摩尔)、Cd2+(100微摩尔)或ω-芋螺毒素(1微摩尔)处理可抑制海人藻酸对微小终板电位频率的增强作用。另一方面,1S,3R-1-氨基环戊烷-1,3-二羧酸(300微摩尔),一种谷氨酸代谢型受体激动剂,可抑制乙酰胆碱的自发释放,而施加2-氨基-3-磷酸丙酸(500微摩尔)可拮抗此作用。在较老的非洲爪蟾蝌蚪中,谷氨酸受体激动剂对微小终板电位频率的增强作用减弱或消失。quisqualate(100微摩尔)和N-甲基-D-天冬氨酸(100微摩尔)而非海人藻酸(30微摩尔)可增加微小终板电位的幅度和衰减时间,而1S,3R-1-氨基环戊烷-1,3-二羧酸(300微摩尔)仅增加微小终板电位的衰减时间。这些结果表明,在较年幼的非洲爪蟾蝌蚪的运动神经末梢中存在海人藻酸/quisqualate和N-甲基-D-天冬氨酸受体,这些受体的激活通过增加Ca2+内流来增强乙酰胆碱的自发释放。我们的数据表明,胆碱能终末上的突触前谷氨酸受体可能参与胚胎早期乙酰胆碱分泌的反馈调节。