Magarshak Iu
Biofizika. 1996 May-Jun;41(3):734-43.
In the present contribution the algebra of color vision has been developed. This algebra is similar to that of spinors. In this formalism, white color corresponds to zero, and any color on color circle goes to complex number. So the color intensity corresponds to the modulus of complex number, as the color itself is the phase of complex number. The schemes of Young-Helmholtz and Hering have been considered. It is demonstrated that these schemes both generate the same algebra of complex numbers, though projective-geometrical algorithm are different.
在本论文中,我们发展了颜色视觉的代数理论。这种代数与旋量代数相似。在这种形式体系中,白色对应于零,色环上的任何颜色都对应于复数。因此,颜色强度对应于复数的模,因为颜色本身就是复数的相位。我们考虑了杨 - 亥姆霍兹和赫林的理论。结果表明,尽管它们的射影几何算法不同,但这两种理论都生成了相同的复数代数。