Levin B R, Bull J J, Stewart F M
Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
Math Biosci. 1996 Feb;132(1):69-96. doi: 10.1016/0025-5564(95)00053-4.
A method derived from demographic theory is presented for modeling the epidemiology of an infectious disease. For long-term infections, this method better accounts for host variation in survival and transmission rates than classical compartment models. Examples of the applications of this method focus on a single long-term infectious disease, HIV/AIDS. The method is employed to examine (1) how changes in transmission rates during different stages of infection affect the rate of spread of HIV/AIDS both in wholly susceptible populations and in populations where the number of potential hosts is limited, (2) the way the relative frequencies of the different stages of infection vary over time, (3) how the rate at which the epidemic is growing (or diminishing) affects the fraction of HIV-infected individuals who manifest the symptoms of AIDS, (4) the effect of treatment on the rate of spread of HIV, and (5) the potential effects of natural selection on the virulence of HIV.
提出了一种源自人口统计学理论的方法,用于对传染病的流行病学进行建模。对于长期感染,该方法比传统的 compartment 模型能更好地解释宿主在生存和传播率方面的差异。此方法的应用示例聚焦于单一的长期传染病——艾滋病毒/艾滋病。该方法用于研究:(1)感染不同阶段传播率的变化如何影响艾滋病毒/艾滋病在完全易感人群以及潜在宿主数量有限的人群中的传播速度;(2)感染不同阶段的相对频率随时间变化的方式;(3)疫情增长(或减少)的速度如何影响表现出艾滋病症状的艾滋病毒感染者的比例;(4)治疗对艾滋病毒传播速度的影响;以及(5)自然选择对艾滋病毒毒力的潜在影响。