Darquenne C, Paiva M
Biomedical Physics Laboratory, Université Libre de Bruxelles, Belgium.
J Appl Physiol (1985). 1996 Apr;80(4):1401-14. doi: 10.1152/jappl.1996.80.4.1401.
We simulate two- and three-dimensional (2D and 3D) aerosol transport for different particle diameters within alveolated ducts. In agreement with previous studies (W. J. Federspiel and J. J. Fredberg. J. Appl. Physiol. 64: 2614-2621, 1988; A. Tsuda, J. P. Butler, and J. J. Fredberg. J. Appl. Physiol. 76: 2497-2509, 1994), the 2D-computed velocity field shows that the flow inside the alveoli is negligible compared with that in the central channel of the ducts and that a recirculation zone is set up in each alveolus. The calculated particle trajectories indicate that in the 2D and 3D simulations the particles do not deposit uniformly on the alveolar walls. For <0.5-microns-diameter particles, simulations show that particles are mainly located near the entrance of alveoli. This suggests that local and mean aerosol concentrations may be substantially different. For large particles we show that the gravity field significantly affects deposition. Aerosol dispersion is also computed, and the simulations are compared with the classical one-dimensional (1D) approach with use of the trumpet model, with additional terms for deposition. The 3D model simulates total deposition that is intermediate between 1D and 2D models. The differences between 2D and 3D data are attributed to the inclusion of azimuthal alveolar walls in the 3D duct and the change from 2D- to 3D-particle motions. Finally, our work suggests that the 1D model may introduce large errors in the location of deposited particles.
我们模拟了不同粒径颗粒在肺泡管内的二维和三维(2D和3D)气溶胶传输。与之前的研究结果一致(W. J. 费德尔斯皮尔和J. J. 弗雷德伯格,《应用生理学杂志》64: 2614 - 2621, 1988;A. 津田、J. P. 巴特勒和J. J. 弗雷德伯格,《应用生理学杂志》76: 2497 - 2509, 1994),二维计算得到的速度场表明,与肺泡管中心通道内的流动相比,肺泡内的流动可以忽略不计,并且在每个肺泡内都形成了一个回流区。计算得到的颗粒轨迹表明,在二维和三维模拟中,颗粒不会均匀地沉积在肺泡壁上。对于直径小于0.5微米的颗粒,模拟结果表明颗粒主要位于肺泡入口附近。这表明局部和气溶胶平均浓度可能存在显著差异。对于大颗粒,我们发现重力场对沉积有显著影响。我们还计算了气溶胶扩散,并将模拟结果与使用喇叭模型的经典一维(1D)方法进行了比较,该方法还增加了沉积项。三维模型模拟得到的总沉积量介于一维和二维模型之间。二维和三维数据之间的差异归因于三维管道中包含了方位角肺泡壁以及颗粒运动从二维到三维的变化。最后,我们的研究表明一维模型可能会在沉积颗粒的位置上引入较大误差。