Shi Y B, Ishizuya-Oka A
Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Curr Top Dev Biol. 1996;32:205-35. doi: 10.1016/s0070-2153(08)60429-9.
Intestinal development in anurans is a biphasic process. The embryogenesis of intestine resembles that in higher vertebrates. The subsequent remodeling process during metamorphosis to produce an adult organ is controlled by TH. Recent progress in studying TH action and its application to amphibian metamorphosis has provided considerable insights into the remodeling process. One possible model for the TH-induced gene regulation cascade of intestinal remodeling is presented in Fig. 9. It is assumed that TRs function as heterodimers with RXRs. In the absence of TH, the TR-RXR heterodimers can bind to TH response elements present in the target genes and repress the basal transcription of these genes (Fondell et al., 1993; Damm et al., 1989; Sap et al., 1989; Baniahmad et al., 1992; Ranjan et al., 1994). The binding of TH leads to conformational changes in the receptor complexes that in turn activate gene transcription. The products of these early response genes then participate in the activation of the remaining gene regulation cascade. Exactly how this occurs remains unknown. Interestingly, the early response genes include not only transcription factors but also other proteins such as metalloproteinases. The transcription factors could activate or repress downstream TH response genes directly. Other proteins are likely to assert their effect indirectly. For example, they could modify the ECM or cell surface. In addition, they could regulate and/or participate in signal transduction by growth factors. The cooperation between these complex intra- and extracellular processes eventually results in the degeneration of the larval organ and formation of the adult tissue. This simplified scheme immediately raises many questions. Although the mRNAs for TRs and RXRs are present in the intestine and the other tissues during metamorphosis (Yaoita and Brown, 1990; Kawahara et al., 1991; Y.-B. Shi, unpublished observations), it is unknown whether the mRNA levels reflect the protein levels. It also remains to be tested whether TR-RXR is indeed the functional complex in vivo and whether the heterodimer is responsible for the activation of the early response genes isolated to date. The majority of the early response genes are ubiquitous. Of the few intestine-specific genes, none of them have yet been identified by sequence analysis. It is of great interest to understand how the same genes expressed in tissues undergoing drastically different changes can exert their biological effects. It is likely that together with existing proteins in the intestine, these early genes regulate tissue-specific downstream genes, which in turn determine the tissue-specific transformation. An important issue is to establish the identity of these downstream genes.
无尾两栖类动物的肠道发育是一个双相过程。肠道的胚胎发生过程与高等脊椎动物相似。随后在变态发育过程中发生的重塑过程,以形成成体器官,这一过程受甲状腺激素(TH)的控制。近期在研究甲状腺激素作用及其在两栖类变态发育中的应用方面取得的进展,为重塑过程提供了相当多的见解。图9展示了一种甲状腺激素诱导的肠道重塑基因调控级联的可能模型。假定甲状腺激素受体(TRs)与维甲酸X受体(RXRs)形成异源二聚体发挥作用。在没有甲状腺激素的情况下,TR-RXR异源二聚体能够与靶基因中存在的甲状腺激素反应元件结合,并抑制这些基因的基础转录(丰德尔等人,1993年;达姆等人,1989年;萨普等人,1989年;巴尼亚赫马德等人,1992年;兰詹等人,1994年)。甲状腺激素的结合会导致受体复合物发生构象变化,进而激活基因转录。这些早期反应基因的产物随后参与激活其余的基因调控级联反应。具体的发生方式尚不清楚。有趣的是,早期反应基因不仅包括转录因子,还包括其他蛋白质,如金属蛋白酶。转录因子可以直接激活或抑制下游的甲状腺激素反应基因。其他蛋白质可能间接发挥作用。例如,它们可以修饰细胞外基质或细胞表面。此外,它们可以调节和/或参与生长因子的信号转导。这些复杂的细胞内和细胞外过程之间的协同作用最终导致幼体器官的退化和成体组织的形成。这个简化的方案立刻引发了许多问题。尽管在变态发育过程中,TRs和RXRs的信使核糖核酸(mRNAs)存在于肠道和其他组织中(八田和布朗,1990年;川原等人,1991年;石一博,未发表的观察结果),但尚不清楚信使核糖核酸水平是否反映蛋白质水平。TR-RXR在体内是否确实是功能性复合物,以及该异源二聚体是否负责激活迄今分离出的早期反应基因,这也有待检验。大多数早期反应基因是普遍存在的。在少数肠道特异性基因中,尚未通过序列分析鉴定出任何一个。了解在经历截然不同变化的组织中表达的相同基因如何发挥其生物学效应,是非常有趣的。这些早期基因可能与肠道中现有的蛋白质一起,调节组织特异性的下游基因,而这些下游基因反过来又决定了组织特异性的转变。一个重要的问题是确定这些下游基因的身份。