Suppr超能文献

Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies.

作者信息

Erecińska M, Nelson D, Daikhin Y, Yudkoff M

机构信息

Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia, USA.

出版信息

J Neurochem. 1996 Dec;67(6):2325-34. doi: 10.1046/j.1471-4159.1996.67062325.x.

Abstract

Stable isotopes were used to measure both the rate of GABA formation by glutamic acid decarboxylase (GAD) and the rate of utilization by GABA-transaminase (GABA-T). The initial rate of GABA accumulation, determined with either [2-15N]glutamine or [2H5]glutamine as precursor, was 0.3-0.4 nmol/min/mg of protein. Addition of the calcium ionophore A23187 enhanced GAD activity, whereas changes in levels of inorganic phosphate and H+ were without influence. Flux through GABA-T (GABA--> glutamate), measured with [15N]GABA as precursor, was 0.82 nmol/min/mg of protein, whereas the reamination of succinic acid semialdehyde (reverse flux through GABA-T) was almost sixfold faster, 4.8 nmol/min/mg of protein. The rate of GABA metabolism via the tricarboxylic acid cycle was very slow, with the upper limit on flux being 0.03 nmol/min/mg of protein. Addition of either acetoacetate or beta-hydroxybutyrate raised the internal content of glutamate and reduced that of aspartate; the GABA concentration and the rate of its formation increased. It is concluded that in synaptosomes (a) GABA-T is a primary factor in regulating the turnover of GABA, (b) a major regulator of GAD activity is the concentration of internal calcium, (c) GAD in nerve endings may not be saturated with its substrate, glutamate, and the concentration of the latter is a determinant of flux through this pathway, and (d) levels of ketone bodies increase, and maintain at a higher value, the synaptosomal content of GABA, a phenomenon that may contribute to the beneficial effect of a ketogenic diet in the treatment of epilepsy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验