Suppr超能文献

单粒子计数器的一种新型符合模型,第三部分:单粒子计数精度的实现。

A new coincidence model for single particle counters, part III: realization of single particle counting accuracy.

作者信息

Knapp J Z, Abramson L R

机构信息

R & D Associates, Incorporated, Somerset, New Jersey, USA.

出版信息

PDA J Pharm Sci Technol. 1996 Mar-Apr;50(2):99-122.

PMID:8935778
Abstract

U.S.P. objective tests for particle contamination in injectable fluids are based on counts of single particles in a specified test volume. Accuracy standards for these tests must therefore be based on single particle count accuracy. A definitive analysis for this purpose is described whose results can be used during a counting experiment. To improve the accuracy of particle counter data, U.S.P.XXIII has added a particle counter accuracy requirement defined in terms of a maximum particle concentration for 10 microns particles at which there is a 10% ratio of coincident occurrences. The 10% coincident count ratio cannot be directly measured: it must be calculated from experimental results using a model of the counting process. The U.S.P.XXIII count accuracy specification relies on vendor statements without definition of the methodology or model to be employed. The model of particle counting described in the literature is the Geometric Poisson model due to Jaenicke (4) and extended by Lieberman (5). Recent publications (1, 2) have shown that calculations based on this model do not agree with experimental data. This conclusion is supported and extended in this paper. The single particle counting error estimate for U.S.P.XXIII (788) SVI (3), using Jaenicke's Geometric model to evaluate a good commercial laser sourced detector, is 9.32%; the single particle count error estimate for this detector using the experimentally validated Particle-Triggered Poisson model is 19%. The count error for the concentration calculated with the Jaenicke Geometric model for the same detector is 40.5% when calculated with the validated Particle-Triggered Poisson model. The estimated count error increases for particles larger than 10 microns. Light extinction particle counters are well behaved instruments fully capable of the workhorse task of making accurate, routine single particle contamination measurements in injectable products. In principle, any particle counter instrument now in use, operated within calculated particle size and concentration contours, can deliver accurate single particle counting data. Operation within these limits both within and below the U.S.P.XXIII (788) (3) size range will assure single particle count accuracy without the injection of false counts or undercounts. These count limits vary with particle size and are determined by the capability of the counter. No single particle test can characterize the complex particle size and concentration response of a detector. In practice, selection of a counter with sufficient capability to provide the desired accuracy without constant dilution is an important consideration. When particle concentration exceeds the selected count accuracy contour, dilution and a repeat of the assay provide a practical solution.

摘要

美国药典中关于注射用流体中颗粒污染的客观测试是基于特定测试体积内单个颗粒的计数。因此,这些测试的准确性标准必须基于单个颗粒计数的准确性。本文描述了一种用于此目的的确定性分析,其结果可在计数实验中使用。为提高颗粒计数器数据的准确性,美国药典XXIII增加了一项颗粒计数器准确性要求,该要求根据10微米颗粒的最大颗粒浓度来定义,此时重合出现的比例为10%。10%的重合计数比例无法直接测量:必须使用计数过程模型根据实验结果进行计算。美国药典XXIII的计数准确性规范依赖于供应商声明,未定义所采用的方法或模型。文献中描述的颗粒计数模型是由雅尼克(4)提出并由利伯曼(5)扩展的几何泊松模型。最近的出版物(1,2)表明,基于该模型的计算与实验数据不一致。本文支持并扩展了这一结论。使用雅尼克的几何模型评估一台优质商用激光源探测器时,美国药典XXIII(788)SVI(3)的单颗粒计数误差估计为9.32%;使用经过实验验证的颗粒触发泊松模型时,该探测器的单颗粒计数误差估计为19%。对于同一探测器,用雅尼克几何模型计算浓度时的计数误差,在用经过验证的颗粒触发泊松模型计算时为40.5%。对于大于10微米的颗粒,估计的计数误差会增加。光散射颗粒计数器是性能良好的仪器,完全能够胜任在注射用产品中进行准确的常规单颗粒污染测量这一主要任务。原则上,现在使用的任何颗粒计数器仪器,只要在计算出的颗粒大小和浓度范围内运行,都能提供准确的单颗粒计数数据。在美国药典XXIII(788)(3)尺寸范围之内及以下在这些限制范围内运行将确保单颗粒计数的准确性,不会引入错误计数或漏计。这些计数限制随颗粒大小而变化,由计数器的能力决定。没有任何单颗粒测试能够表征探测器复杂的颗粒大小和浓度响应。在实际操作中,选择一台具有足够能力以提供所需准确性而无需持续稀释的计数器是一个重要的考虑因素。当颗粒浓度超过选定的计数准确性范围时,稀释并重复测定是一种实际的解决办法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验